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The paper presents a global optimization method to compute the minimum limit load factor of trusses sub-
jected to unknown but bounded loads. We assume that the external forces consist of a part proportional
to a load factor and a part that is uncertain around its nominal value. The worst-case limit load factor is
introduced as the smallest limit load factor realized with some uncertain parameters. In order to detect the
worst case, we have to find the global optimal solution of a nonconvex optimization problem, which is the
major difficulty of the worst-case limit analysis. By reformulating the worst-case determination problem
as a mixed 0-1 programming problem, we propose a global optimization algorithm as a combination of
a branch-and-bound method based on the linear programming relaxations and a cutting plane method
based on the disjunctive or lift-and-project cuts. The worst-case limit loads, as well as the corresponding
critical loading patterns, are computed to demonstrate that our method converges to the global optimal
solutions successfully.

1. Introduction

In designing civil, mechanical and aerospace structures, plastic limit analysis has been used widely for
decades as a means of estimating the ultimate strength of structures. While dead and live loads are
uncertain around their nominal values, the disturbance load is applied proportionally with a load factor.
This paper discusses a global optimization technique for computing the smallest limit load factor of truss
structures, where the applied dead and live loads are imprecisely known.

Limit analysis still receives much attention by numerous researchers with regard to algorithms [Mu-
ralidhar and Jagannatha Rao 1997; Andersen et al. 1998; Cocchetti and Maier 2003; Krabbenhoft and
Damkilde 2003] and issues relevant to the finite element method [Tin-Loi and Ngo 2003; Lyamin et al.
2005]. Based on the probabilistic uncertainty models of structural systems, various approaches to stochas-
tic limit analysis have also been proposed [Lloyd Smith et al. 1990; Rocho and Sonnenberg 2003; Staat
and Heitzer 2003; Marti and Stoeckel 2004]. In the framework of probabilistic uncertainties, reliability-
based structural design methods have been investigated extensively [Zang et al. 2005; Kharmanda et al.
2004].

Besides these probabilistic uncertainty models, nonprobabilistic uncertainty models have also been
developed, where a mechanical system is assumed to contain uncertain parameters which are unknown
but bounded. [Ben-Haim and Elishakoff 1990] developed the well known convex model approach, with
which [Ganzerli and Pantelides 1999] proposed a robust truss optimization method. Interval linear algebra
has been well developed for uncertain linear equations [Alefeld and Mayer 2000], and has been employed
in structural analyses with uncertainties [Chen et al. 2002]. In contrast to probabilistic models, these
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nonprobabilistic uncertainty models require only upper bounds on the magnitude of uncertain parameters,
and engineers need not estimate the probabilistic density distributions of uncertain parameters.

[Elishakoff et al. 1994] proposed a structural optimization scheme under unknown-but-bounded uncer-
tainty by using antioptimization. The bilevel optimization problems were formulated and solved numer-
ically for robust structural design against the worst case [Craig et al. 2003; Cheng et al. 2004]. [Gu et al.
2000] proposed an estimation method for the worst case of propagated uncertainty in a multidisciplinary
system. A unified methodology which is a robust counterpart of various convex optimization problems
was developed by [Ben-Tal and Nemirovski 2002], and was applied to robust compliance minimization
of trusses [Ben-Tal and Nemirovski 1997]. The authors proposed methods for robustness analysis and
robust optimization of structures [Takewaki and Ben-Haim 2005; Kanno and Takewaki 2006a; Kanno
and Takewaki 2006b] based on the info-gap uncertainty model [Ben-Haim 2001].

A serious difficulty in worst-case detection arises when the worst case is defined as an optimal solution
of a nonconvex optimization problem in terms of the uncertain parameters. Conventional methods for
linear worst-case analysis, for example the convex model of [Ben-Haim and Elishakoff 1990], can be
applied only to cases in which sufficiently small variation of the uncertain parameters is allowed, or in
which the structural response considered is represented as a linear function of the uncertain parameters.
In these cases, the worst case can be detected by solving a convex optimization problem.

Unfortunately, in many practical situations, the variation of uncertain parameters is not small and we
are interested in nonlinear responses of structures. Then the worst case is defined through a nonconvex
optimization problem. In general, the conventional nonlinear programming approach converges to a local
optimal solution of that problem. However, a local minimum solution, which is not globally optimal, does
not correspond to the worst case. Obviously, the worst case corresponds to a global optimal solution.
Thus, we have to find a global optimal solution of the nonconvex problem and guarantee that the solu-
tion obtained is globally optimal, which prevent us from using the conventional nonlinear programming
algorithms.

In this paper, we aim at developing a global optimization method for worst-case detection. We consider
the limit load factor of a truss structure subjected to uncertain loads. The external forces applied to a
truss are supposed to consist of a constant part and a part proportional to a load factor, where the former
part cannot be known precisely, but is assumed to be bounded. The worst-case limit load factor is defined
as the minimum value among all the possible limit load factors realized by some uncertain parameters
belonging to the given closed set.

We define the worst-case limit load factor by using a nonconvex optimization problem, which can
be rewritten as a mixed 0-1 programming problem. Based on a linear programming (LP) relaxation,
we propose a simple branch-and-bound algorithm to obtain a global optimal solution of the mixed 0-1
programming problem. To strengthen the LP relaxation, we generate some cutting planes at the root
node of the branch-and-bound tree. This approach is called the cut-and-branch method [Cordier et al.
1999]. We formulate an LP problem to generate the deepest disjunctive cut. By adding generated cuts
to LP relaxation problems, we drastically reduce the number of LP problems to be solved in the branch-
and-bound method.

The solution obtained by using the cut-and-branch method is a global optimal solution of the worst-
case determination problem, that is, it is assured that there exists no uncertain parameter with which the
limit load factor becomes smaller than the obtained optimal value. Through the numerical experiments in
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Section 6 we show that the limit load factor can be reduced greatly from its nominal value, by nontrivial
combination of uncertain external forces. We also show that the critical load yielding the worst-case
limit load factor cannot be detected easily by generating a large sample of loading scenarios. The upper
bound of the worst-case limit load factor obtained from such a sample is shown to be too optimistic.

Recently, there has been renewed interest in cutting planes, or cuts, that are valid linear inequalities
of a mixed integer programming problem; see for example the review paper [Marchand et al. 2002].
In particular, the branch-and-cut method [Balas et al. 1996; Cordier et al. 1999], that is, a branch-and-
bound method with cuts added, is considered as the most successful approach to solving the mixed integer
program. Among various types of cuts, a disjunctive cut (or lift-and-project cut) is defined as a linear
inequality selected among inequalities valid for a disjunctive programming relaxation of the mixed 0-1
program [Balas et al. 1996; Ceria and Soares 1997; Balas and Perregaard 2002]. We utilize disjunctive
cuts to strengthen the LP relaxation problems that are solved at nodes of the branch-and-bound tree.

This paper is organized as follows. In Section 2, we prepare the LP problems for conventional limit
analysis and define the notation used in this paper. In Section 3 we introduce the notion of uncertain limit
analysis by defining the info-gap model for uncertainty of external load and the worst-case limit load
factor. In Section 4, we present the mixed 0-1 programming formulation for the uncertain limit analysis,
and propose a branch-and-bound method as the solution. In Section 5 we propose an LP problem that
generates the disjunctive cutting plane, to strengthen the LP relaxation problems solved in the branch-
and-bound tree. In Section 6 we present numerical experiments for various trusses, made using our
cut-and-branch method. Finally, in Section 7 we draw conclusions.

2. Notation and preliminary results

2.1. Notation. In this paper, we assume all vectors to be column vectors. For an n-tuple pm+1, . . . , pm+n ,
we let (pi | i =m+1, . . . , m+n) and {pi | i =m+1, . . . , m+n}, respectively, denote the n-dimensional
vector (pm+1, . . . , pm+n)

> and the set consisting of pm+1, . . . , pm+n . The vector (pi | i = 1, . . . , n) ∈Rn

is often simplified as (pi ) ∈ Rn . The `1, `2 (or standard Euclidean), and `∞ norms of the vector p =
(pi ) ∈ Rn , denoted by ‖ p‖1, ‖ p‖2, and ‖ p‖∞, respectively, are defined as

‖ p‖1 =
n∑

i=1

|pi |,

‖ p‖2 = ( p> p)1/2,

‖ p‖∞ = max
i∈{1,...,n}

|pi |.

For vectors p = (pi ) ∈ Rn and q = (qi ) ∈ Rn , we write p ≥ 0 and p ≥ q, respectively, if pi ≥ 0,
i = 1, . . . , n and p− q ≥ 0. The (m+ n)-dimensional column vector ( p>, q>)> is often written simply
as ( p, q). Moreover, ( p, q)i denotes the i-th component of the vector ( p>, q>)>.
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We define the vectors 1 ∈ Rn and e j
∈ Rn , j = 1, . . . , n, as

1= (1, . . . , 1)>,

e j
= (e j

i | i = 1, . . . , n), e j
i =

{
e j

i = 0, for i 6= j,

e j
j = 1,

that is, e j is the j-th column vector of the identity matrix. We define Rn
+
⊂ Rn as

Rn
+
= {x ∈ Rn

| x ≥ 0}.

For two sets A⊆Rm and B⊆Rn , the Cartesian product is defined as A×B= {(a>, b>)> ∈Rm+n
| a ∈

A, b ∈B}. In particular, we write Rm+n
= Rm

×Rn .
The convex hull of A, that is the smallest convex set that contains A is denoted ’conv A.’ The closure

of A, that is smallest closed set that contains A, is denoted ‘cl A.’ The cardinality of the set A is denoted
|A|. The empty set is denoted as ∅.

2.2. Basic problem for plastic limit analysis. Consider an elastic and perfectly-plastic truss in two- or
three-dimensional space. Small rotations and small strains are assumed. Let f ∈ Rnd

denote the vector of
the external forces, where nd denotes the number of degrees of freedom of displacements. Where nm is
the number of members, the vector of member axial forces is q = (qi ) ∈ Rnm

. The system of equilibrium
equations in terms of f and q can be written

Bq = f , (1)

where B ∈ Rnd
×nm

is a constant matrix.
Let u ∈ Rnd

and ci denote the vector of nodal displacements and the corresponding elongation of the
i-th member, respectively. We often write c= (ci ) ∈ Rnm

. The i-th column vector of B is denoted by
bi ∈ Rnd

, i = 1, . . . , nm. The compatibility relation between u and ci can be written as

ci = b>i u, i = 1, . . . , nm. (2)

The external load f consists of a constant part f D and a proportionally increasing part λ f R, that is,

f = f D+ λ f R. (3)

Here, λ f R is defined by the monotonically increasing load parameter λ ∈ R and the constant reference
load Rnd

3 f R 6= 0. In civil engineering, f D consists of the dead load, live load, etc., while λ f R consists
of live or disturbance load caused by earthquakes, winds, and the like. For the sake of simplicity, in this
paper f D is simply called dead load and f R is called reference disturbance load.

Let σ
y
i > 0 and −σ

y
i denote the yield stresses of the i-th member in tension and in compression,

respectively. We assume for simplicity that the yield stresses in tension and compression share the
common absolute value. The member cross-sectional area is denoted by ai > 0. The absolute value of
the admissible axial force can be expressed as

qy
i = aiσ

y
i , i = 1, . . . , nm.
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Then, the yield functions can be written as

|qi | − qy
i ≤ 0, i = 1, . . . , nm. (4)

From the static or lower-bound principle [Hodge 1959], and by using (1), (3), and (4), the limit load
factor is obtained by solving the following LP problem

max
{
λ : Bq = f D+ λ f R, |qi | − qy

i ≤ 0, i = 1, . . . , nm}
, (5)

where the variables are λ and q.

3. Uncertain limit analysis

In this section, we introduce the uncertainty model of the external load, and rigorously define the worst-
case limit load factor.

3.1. Uncertainty model. In this paper, we suppose that only f D in Equation (3) possesses uncertainty,
that is, it cannot be known precisely. The model of the uncertainty of f D is motivated by a nonproba-
bilistic information-gap model [Ben-Haim 2001].

Let f̃ D ∈ Rnd
denote the nominal value (or the best estimate) of f D. We describe the uncertainty

of f D in terms of the m-dimensional vector ζ ∈ Rm , which is considered to be unknown but bounded.
Suppose that f D depends on ζ affinely as

f D = f̃ D+ Tζ , (6)

where T ∈ Rnd
×m is a constant matrix satisfying the following assumption:

Assumption 3.1. The matrix T in Equation (6) satisfies the following conditions:

(i) {T>u| u ∈ Rnd
} = Rm ;

(ii) f >R Tζ = 0 for any ζ ∈ Rm .

Assumption 3.1 (ii) implies that the reference disturbance load f R does not have uncertainty.
For a given parameter α ∈ R+, the uncertain set Z(α)⊂ Rm is defined as

Z(α)=
{
ζ ∈ Rm

∣∣ α ≥ ‖ζ‖∞
}
, (7)

where the uncertain parameters vector ζ is assumed to be running through Z(α), that is,

ζ ∈ Z(α). (8)

From (6), (7), and (8) it follows that the uncertain f D satisfies

f D ∈ FD(α) :=
{

f ∈ Rnd ∣∣ f = f̃ D+ Tζ , α ≥ ‖ζ‖∞

}
. (9)

Roughly speaking, f D moves around the center-point f̃ D. The greater the value of α, the greater the
range of possible variation of f D. In the context of the info-gap uncertainty model [Ben-Haim 2001], α

is called the uncertainty parameter. Throughout, we suppose that the bound α on the uncertain variation
given in Equation (9) is a constant. Note that the uncertain set FD(α) is bounded for any α ∈ R+.
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Moreover, FD(α) satisfies the two basic axioms for the info-gap model: nesting, in which 0≤ α1 < α2

implies FD(α1)⊂ FD(α2), and contraction, in which FD(0) is the singleton set { f̃ D}.

3.2. Worst-case limit load factor. For a given (but uncertain) dead load f D ∈ Rnd
, we define a set

Q( f D)⊆ Rnm
+1 as

Q( f D) :=
{
(λ, q) ∈ R×Rnm

∣∣∣ Bq = f D+ λ f R, |qi | − qy
i ≤ 0, i = 1, . . . , nm

}
, (10)

which is the set of all statically admissible vectors (λ, q) ∈ R×Rnm
associated with the fixed f D. We

also define λ∗ : Rnd
→ R as

λ∗( f D)=max
λ,q

{
λ : (λ, q) ∈ Q( f D)

}
. (11)

According to the static principle (5), λ∗( f D) corresponds to the limit load factor under the dead load f D.
the external load in the decomposition (3) of the total external load f , while f D is called the dead load,
for the sake of simplicity. In civil engineering, it is usually held that f D consists of the conventional
dead load caused by the weight of the truss itself and the live load caused by the nonstructural masses.
In contrast, f R is the reference disturbance load, and λ f R is regarded as the load caused by earthquakes,
winds, and the like. Hence, the uncertainty of live load, as well as that of dead load, can be represented
by the uncertainty of f D. For consistency in the concept of the limit load factor, we make the following
assumption throughout our study:

Assumption 3.2. The uncertainty set FD(α) is chosen so that

λ∗( f D) > 0, for all f D ∈ FD(α).

This assumption guarantees that the structure does not collapse without applying the load λ f R (λ > 0).
In other words, if it is not satisfied, there exists f ′D ∈ FD(α) such that the structure collapses only with
the dead load f ′D.

We can now introduce a concept of the worst-case limit load factor, by considering that the limit
load factor can be regarded as a function of f D as seen in Equation (11), while f D is uncertain and
running through FD(α). Certainly, to evaluate robustness of trusses quantitatively, we are interested in
the most severe situation, if any, in which the limit load factor happens to decrease unexpectedly from
the nominal limit load factor corresponding to f̃ D because of the uncertainty of f D. To this end, we
attempt to compute the minimum value of the limit load factor that can be attained at some load satisfying
f D ∈ FD(α). This is naturally realized by introducing λmin : R+→ R as

λmin(α)=min
f D

{
λ∗( f D) : f D ∈ FD(α)

}
. (12)

Substitution of (9) into (12) yields

λmin(α)=min
ζ

{
λ∗( f D(ζ )) : α ≥ ‖ζ‖∞

}
. (13)

Let ζ cr, which we call the critical uncertain parameters vector, denote an optimal solution of (13). Given
the uncertainty parameter α, we refer to λmin(α) defined by (13) as the worst-case limit load factor, that is
the minimum value among limit load factors λ∗( f D) corresponding to f D ∈FD(α). The corresponding
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dead load f D(ζ cr) is called the critical load. In the case without uncertainty, we easily see that the
following relationship holds:

λmin(0)= λ∗( f̃ D)= λ∗
(

f D(0)
)
,

where λ∗( f̃ D) is the nominal limit load factor, that is, the limit load factor corresponding to the nominal
dead load f̃ D.

The objective of this paper, then, is to propose a solution technique for computing both λmin(α) and
ζ cr.

Remark 3.3. In this paper we suppose that only the external load has uncertainty, and that the strength
(or the admissible axial force) qy

i of each member is certain. This is because the worst case associated
with the uncertainty of member strength can be found easily for the limit analysis. Indeed, the limit
load factor monotonically decreases if member strength decreases. Hence, the set of critical member
strength corresponds to the trivial case in which the strength of each member coincides with its lower
bound. On the contrary, the loading pattern that gives the worst case is not trivial, which motivates us
to confine attention to the uncertainty of f D. We also assume throughout that f R is certain. Suppose
that f R varies proportionally with the fixed direction. Then the worst-case limit load factor is obtained
simply by scaling the limit load factor corresponding to the nominal value of f R. In future work, it may
be interesting to consider the case where the distribution and/or the direction of f R include uncertainty.

Remark 3.4. The limit load factor can be computed easily if the loading pattern of the additional dead
load is fixed. Suppose that ζ in Equation (9) is defined as ζ = βζ 0 with a given constant ζ 0 and a
parameter β. After finding the nominal limit load factor λ∗( f D(0)) by employing conventional limit
analysis, the variation of λ∗( f D(βζ 0)) with respect to β can be computed by simply using a parametric
linear programming [Chvátal 1983] approach. In our problem, the direction of ζ is unknown and should
be determined so as to minimize λ∗( f D(ζ )). Again, note that here we are trying to find a global optimal
solution of (13) which is essentially nonconvex.

3.3. Some relevant problems. In the remainder of this section, we prepare a reformulation of (13) into
the mixed 0-1 programming problem we will present in Section 4. Defining

U=
{
(u, z) ∈ Rnm

×Rnd ∣∣ f >R u = 1, zi ≥ |b>i u|, i = 1, . . . , nm
}

, (14)

consider the following problem in the variables (u, z) ∈ Rnd
×Rnm

:

v∗( f D) :=min
u,z

{
− f >D u+ qy>z : (u, z) ∈U

}
. (15)

Proposition 3.5 (Relation between problems (5) and (15)). Let (ū, z̄) denote an optimal solution of
Problem (15). Then,

(i) v∗( f D)= λ∗( f D);

(ii) u corresponds to a collapse mode associated with f D;

(iii) zi corresponds to the member elongation compatible to u.
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Proof. We prove this proposition by showing that Equation (15) is dual to the static principle problem (5).
Regarding the constraint

qy
i ≥ |qi | (16)

in (5), observe that qi satisfies (16) if and only if

(qy
i , qi ) · (zi , wi )≥ 0

holds for any (zi , wi ) where

zi ≥ |wi |. (17)

As a result, the function

L(λ, q, u, z, w)=

{
λ+ u>

(
Bq− f D− λ f R

)
+ (z>qy

+w>q), if zi ≥ |wi |, i = 1, . . . , nm,

−∞, otherwise,

corresponds to the Lagrangian of (5), where u ∈Rnd
, z ∈Rnm

, and w ∈Rnm
are the Lagrangian multipliers.

Then the Lagrangian dual of (5) is

min
u,z,w

sup
{

L(λ, q, u, z, w) : (λ, q) ∈ R×Rnm
}

,

the explicit form of which is easily obtained as

min
{
− f >D u+ qy>z : wi =−b>i u, f >R u = 1, zi ≥ |wi |, i = 1, . . . , nm}

. (18)

Eliminating w from (18) yields (15). Hence, the LP problem (15) is dual to the LP problem (5). From
this, and the strong duality of LP [Chvátal 1983] , we obtain the assertions (i) and (ii). Optimal solutions
of (5) and (18) satisfy the complementarity condition

zi q
y
i +wi qi = 0 (19)

over the constraints (16) and (17). Since (16), (17), and (19) imply zi =−wi , we see that zi = b>i u is
satisfied at an optimal solution of (15), and we obtain assertion (iii). �

Remark 3.6. Note that the upper bound principle (15) is different from the well-known formulation for
trusses (see, for example, [Muralidhar and Jagannatha Rao 1997]). Observe that the yield condition (4)
in (5) can be rewritten as

qy
i − qi ≥ 0, qy

i + qi ≥ 0, i = 1, . . . , nm. (20)

The elongation ci defined in (2) is divided into the two parts as

ci = c+i − c−i , c+i ≥ 0, c−i ≥ 0, i = 1, . . . , nm. (21)



WORST CASE PLASTIC LIMIT ANALYSIS OF TRUSSES 253

Using (20) and (21), the set of relations governing the elastic and plastic behavior can be written as

Bq = f D+ λ f R, (equilibrium)

qy
− q ≥ 0, qy

+ q ≥ 0, (yield conditions)

f >R u = 1, (normalization)

c+− c− = B>u, (compatibility)

c+ ≥ 0, c− ≥ 0, (plastic elongation)

(qy
− q)>c+ = 0, (qy

+ q)>c− = 0. (complementarity) (22)

From (21) and (22) it also follows that the dual to (5) can be formulated in the variables u∈Rnd
, c+ ∈Rnm

,
and c− ∈ Rnm

as

min
{
− f >D u+ qy>(c++ c−) : f >R u = 1, c+− c− = B>u, c+ ≥ 0, c− ≥ 0

}
, (23)

which coincides with the conventional formulation of upper-bound principle [Muralidhar and Jagan-
natha Rao 1997]. However, the number of variables in (23) is larger than that of (15), which may imply
an advantage of (15) over (23).

For α ∈ R+, consider the following nonconvex problem in the variables (u, z, ζ ) ∈ Rnd
×Rnm

×Rm :

vmin(α) := min
u,z,ζ

{
−( f̃ D+ Tζ )>u+ qy>z : (u, z) ∈U, α ≥ ‖ζ‖∞

}
. (24)

The following proposition shows that (24) corresponds to the kinematic version of the worst-case limit
analysis (13):

Proposition 3.7 (Relation between problems (13) and (24)). Let (u, z, ζ ) denote an optimal solution of
Problem (24). Then,

(i) vmin(α)= λmin(α);

(ii) ζ is an optimal solution of (13);

(iii) u corresponds to a collapse mode associated with the external dead load f D(ζ );

(iv) zi corresponds to the member elongation compatible with u.

Proof. By using the definition (11) of λ∗, (13) can be rewritten equivalently as

min
ζ

{
max
λ,q

{
λ : (λ, q) ∈ Q( f D(ζ ))

}
: α ≥ ‖ζ‖∞

}
(25)

without changing the optimal value. Let (̂ζ , λ̂, q̂) denote an optimal solution of (25). It is obvious that
ζ̂ is an optimal solution of (13), and that λ̂= λmin(α). Since the inner problem of (25) coincides with
the static principle (13), q̂ corresponds to the vector of axial forces at the collapse mode. By using
Proposition 3.5, we can rewrite the inner problem of (25) as

min
ζ

{
min
u,z

{
− f D(ζ )>u+ qy>z : (u, z) ∈U

}
: α ≥ ‖ζ‖∞

}
(26)
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without changing the optimal value. Obviously, ζ̂ is an optimal solution of (25) if and only if it is an
optimal solution of (26). Moreover, Proposition 3.5 guarantees that, at an optimal solution of (26), u and
zi , respectively, coincide with the collapse mode and the member elongation corresponding to q̂. From
(6), we see that Problems (24) and (26) share the same optimal value and same optimal solutions, which
concludes the proof. �

Proposition 3.7 justifies solving (24) instead of the bilevel optimization problem (13), that is, the worst-
case limit load factor is obtained as the optimal value of (24). The critical load and the corresponding
collapse mode can be obtained simultaneously as the optimal variables of (24). Note that (24) is a
nonconvex (but single-level) problem, since the objective function includes the nonconvex quadratic
term ζ>T>u. Hence, the conventional nonlinear programming approach converges to a local optimal or
stationary solution in general. It should be emphasized that, for the purpose of the robustness analysis,
the proof of global optimum of (24) is strongly desired, since it guarantees that the limit load factor
cannot be smaller than the obtained optimal objective value. This is the major difficulty of the worst-
case limit analysis. To overcome this difficulty, in the following section we propose an algorithm that
converges to a global optimal solution of (24).

4. Global optimization for uncertain limit analysis

In this section, we propose an algorithm to find a global optimal solution of (13) based on enumeration.

4.1. Mixed 0-1 programming formulation. We start by reformulating (13) as a mixed 0-1 programming
problem. Letting

C0
:= Rnd

×Rnm
×Rm

×Rm,

we define a set K⊆ C0 as

K=

(u, z, γ , τ ) ∈ C0

∣∣∣∣∣∣∣∣∣∣
f >R u = 1,

z− B>u ≥ 0, z+ B>u ≥ 0,

γ − T>u ≤ M(1− τ ), γ + T>u ≤ Mτ ,

0≤ τ ≤ 1

 , (27)

where M ∈ R+ is a sufficiently large constant. Let

KZ
=

{
(u, z, γ , τ ) ∈ K

∣∣ τ ∈ {0, 1}m
}
. (28)

Consider the following optimization problem in the variables (u, z, γ , τ ) ∈ C0:

min
{
−α1>γ − f̃ >D u+ qy>z : (u, z, γ , τ ) ∈ KZ

}
. (29)

We refer to (29) as the mixed 0-1 programming problem. It has binary constraints on τ , linear in-
equality constraints, and a linear objective function.

Proposition 4.1 (Relation between problems (24) and (29)). A feasible solution (u, z, ζ ) of (24) satisfy-
ing

ζ
>T>u = α‖T>u‖1 (30)
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is optimal if and only if a feasible solution (u, z, γ , τ ) of Problem (29) satisfying

γ j = |t
>

j u|, j = 1, . . . , m, (31)
τ j = 1, if t>j u > 0,

τ j = 0, if t>j u < 0,

τ j ∈ {0, 1}, if t>j u = 0,

(32)

is optimal. Moreover, Problems (24) and (29) share the same optimal value, that is, equal to λmin(α).

Proof. Observe that, in (24), only α ≥ ‖ζ‖∞ is the constraint on ζ , which is independent of the remaining
variables z and u. Hence, (24) is equivalently rewritten as

min
u,z

{
min

ζ

{
−( f̃ D+ Tζ )>u : α ≥ ‖ζ‖∞

}
+ qy>z : (u, z) ∈U

}
(33)

without changing the optimal value and optimal solution. From the Hölder inequality [Marti and Stoeckel
2004, Chap. 9], we see that

(Tζ )>u ≥ ‖ζ‖∞‖T>u‖1 (34)

holds for any fixed u. Moreover, Assumption 3.1 (i) guarantees that there exists a ζ satisfying

(Tζ )>u = ‖ζ‖∞‖T>u‖1. (35)

From (34) and (35), we obtain

min
ζ

{
−(Tζ )>u : α ≥ ‖ζ‖∞

}
=min

ζ

{
−‖ζ‖∞‖T>u‖1 : α ≥ ‖ζ‖∞

}
=−α‖T>u‖1,

where an optimal ζ satisfies (35). Consequently, the variable ζ can be eliminated from (33) as

min
u,z

{
−α‖T>u‖1− f̃ >D u+ qy>z : (u, z) ∈U

}
. (36)

Note that an optimal solution (u, z) of (36) can be converted to an optimal solution (u, z, ζ ) of (33)
by defining ζ as in (30), and these two problems share the same objective value. By introducing new
variables γ ∈ Rm , (36) is equivalently rewritten as

min
{
−α1>γ − f̃ >D u+ qy>z : (u, z) ∈U, (γ j = t>j u)∨ (γ j =−t>j u), j = 1, . . . , m

}
. (37)

where ∨ denotes logical ‘or’. Note that (31) holds at an optimal solution of (37). By using a sufficiently
large constant M , the disjunction (

γ j ≤ t>j u
)
∨

(
γ j ≤−t>j u

)
is equivalently rewritten as

γ j ≤ t>j u+M(1− τ j ), γ j ≤−t>j u+Mτ j , τ j ∈ {0, 1},

with the relation (32), which completes the proof. �
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4.2. Branch-and-bound method for problem (29). The LP relaxation of the mixed 0-1 programming
problem (29) is obtained by ignoring the binary constraints on τ as

min
{
−α1>γ − f̃ >D u+ qy>z : (u, z, γ , τ ) ∈ K

}
. (38)

Define a set C as

C=
{
(u, z, γ , τ ) ∈ C0

∣∣∣ A>u u+ A>z z+ A>γ γ + A>τ τ ≥ b
}

, (39)

where Au ∈ Rnd
×nc

, Az ∈ Rnm
×nc

, Aγ ∈ Rm×nc
, Aτ ∈ Rm×nc

, and b ∈ Rnc
are constant matrices and a

constant vector. Assume that C satisfies

cl conv K⊆ C⊆ C0. (40)

Note that in this section we set C := C0, while in Section 5 we discuss how to generate a proper subset
C of C0.

Let Jk
0 and Jk

1 denote the subsets of indices satisfying

Jk
0 ⊆ {1, . . . , m}, Jk

1 ⊆ {1, . . . , m}, Jk
0 ∩Jk

1 =∅.

Let

K(C, Jk
0, Jk

1)=
{
(u, z, γ , τ ) ∈ K∩C

∣∣ τ j = 0 for j ∈ Jk
0, τ j = 1 for j ∈ Jk

1
}
,

where K and C have been defined in (27) and (39). Consider the following LP problem in the variables
(z, u, γ , τ ) ∈ C0:

LP(C, Jk
0, Jk

1) : vk
:=min

{
−α1>γ − f̃ >D u+ qy>z : (u, z, γ , τ ) ∈ K(C, Jk

0, Jk
1)

}
. (41)

Explicitly, (41) is written as

min
{
−α1>γ − f̃ >D u+ qy>z : (42a)

f >R u = 1, (42b)

z− B>u ≥ 0, (42c)

z+ B>u ≥ 0, (42d)

γ − T>u ≤ M(1− τ ), (42e)

γ + T>u ≤ Mτ , (42f)

0≤ τ ≤ 1, (42g)

A>u u+ A>z z+ A>γ γ + A>τ τ ≥ b, (42h)

τ j = 0 for j ∈ Jk
0, τ j = 1 for j ∈ Jk

1
}
. (42i)

We solve LP(C, Jk
0, Jk

1) at the nodes of enumeration tree. Note that LP(C0, ∅, ∅) coincides with the
LP relaxation (38).

The following is a branch-and-bound method for solving the mixed 0-1 programming problem (29)
based on the LP relaxation.
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Algorithm 4.2. Branch-and-bound algorithm for (29).

Step 0: Initialization. Set k = 0, J0
1 =∅, J0

0 =∅, and vU
=∞. Choose the small tolerance ε > 0 and

C satisfying (40) (set C := C0 in this section).

Step 1: Solving the subproblem. Solve the linear program LP(C, Jk
0, Jk

1) defined in (41). If the problem
is infeasible, go to Step 5; otherwise, let (uk, zk, γ k, τ k) and vk denote its optimal solution and
optimal objective value, respectively.

Step 2: Fathoming. If vk
≥ vU, go to Step 5.

Step 3: Branching. If (τ k)>(1− τ k)≤ ε, go to Step 4; otherwise, select an index j1 such that

j1 = arg max
j∈{1,...,m}

{
τ k

j (1− τ k
j )

}
.

Set Jk+1
1 := Jk

1 ∪ { j1} and pk+1
:= ( pk, j1)>. Update k← k+ 1, and go to Step 1.

Step 4: Updating. Put vU
:= vk and (u, z, γ , τ ) := (uk, zk, γ k, τ k). Go to Step 5.

Step 5: Backtracking. If pk < 0, go to Step 6; otherwise branch to a new live node as follows:
Define l1 =max

{
l ∈ {1, . . . , L}

∣∣ pk
l > 0

}
, where L denotes the size of the vector pk . Divide pk

into the three parts

p1 =
(

pk
l

∣∣ l = 1, . . . , l1− 1
)
, p2 = pk

l1
, P3 =

{
−pk

l

∣∣ l = l1+ 1, . . . , L
}
.

Set

pk+1
:=

(
p>1 ,−p2

)>
,

Jk+1
0 :=

{
Jk

0 ∪ {p2}
}
\P3,

Jk+1
1 := Jk

1 \ {p2}.

Update k← k+ 1, and go to Step 1.

Step 6: Termination. Declare (z, u, γ , τ ) as the optimal solution, and stop.

Remark 4.3. Essentially, Algorithm 4.2 is designed by using depth-first search (see, for example
[Clausen and Perregaard 1999]) as a strategy for selecting the next live subproblem at Step 5. The
condition pk < 0 implies that there exists no live node. Among the live subproblems, we always select
the subproblem with the largest level in the branch-and-bound tree. The vector pk plays the role of
bookkeeping the path from the root node to the current node in the branch-and-bound tree. The size L
of pk

= (pk
j ) coincides with the current depth of the tree, and we see that the following relations hold:

Jk
0 =

{
pk

j

∣∣∣ pk
j ≤ 0, j = 1, . . . , L

}
,

Jk
1 =

{
−pk

j

∣∣∣ pk
j ≥ 0, j = 1, . . . , L

}
,

that is, the components of pk correspond to the indices of τ j , possibly with opposite signs, which are
fixed in the current subproblem LP(C, Jk

0, Jk
1). The remaining τ j are not fixed in LP(C, Jk

0, Jk
1). The

order of an element pk
j of pk is determined by its level in the tree.
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Remark 4.4. Observe that the binary constraints τ ∈ {0, 1}m are equivalent to the following complemen-
tarity conditions:

τ ≥ 0, 1− τ ≥ 0, (43)

τ j (1− τ j )= 0, j = 1, . . . , m. (44)

Notice here that any feasible solution of LP(C, Jk
0, Jk

1) satisfies (43). At Step 3, we make a check if
the current solution (uk, zk, γ k, τ k) satisfies the complementarity conditions (44) or not. Satisfaction
(possibly with small tolerance in practice) implies that (uk, zk, γ k, τ k) is a feasible solution of (29).
Alternatively, if (44) is not satisfied, then the variable τ j with the largest residual of the complementarity
(44) is used as the branching variable in Step 3.

Remark 4.5. Note that it is not difficult to randomly generate f ′D satisfying f ′D ∈ FD(α). Then the
corresponding limit load factor λ∗( f ′D) provides an upper bound of the mixed 0-1 (29). At Step 0, we
can obtain an upper bound vU by solving (11) several times for randomly sampled f ′D. We simply set
vU
=∞ if this process is skipped.

Remark 4.6. In this paper, we focus on finding the global optimal solution of (13). Alternatively, for
very large structures, it is also important to develop an efficient algorithm for computing a lower bound
of λmin(α). For this purpose, it may be interesting to investigate a relaxation of (13) based on the concept
of uncertain LP, as presented in [Ben-Tal et al. 2004].

4.3. Duality and simplification. The remainder of this section is devoted to some practical issues regard-
ing implementation of Algorithm 4.2. In fact, to obtain (uk, zk, γ k, τ k) at Step 1, we do not solve (41)
directly but use the simplex method to solve its Lagrangian dual problem, denoted by LP∗(C, Jk

0, Jk
1).

Then we obtain the solution of (41) as the optimal Lagrange multipliers. From preliminary numerical
experiments, we observed that the CPU time required to solve the dual problem is much smaller than
that required to solve the original (41). Indeed, after the branching process of Step 3, at the new node
it is easy to obtain a feasible solution of the dual problem from an optimal solution of the dual problem
solved at the previous node. Let

C0∗
= R×Rnm

×Rnm
×Rm

×Rm
×Rm

×Rm .

From the LP duality [Chvátal 1983] it follows that the dual problem of the LP relaxation LP(C, ∅, ∅)

is formulated in the variables (ρλ, q+, q−, ζ+, ζ−, ρ+, ρ−, µ) ∈ C0∗
×Rnc

as

LP∗(C, ∅, ∅) : max
{
ρλ
− 1>(Mρ++ ρ−)+ b>µ : (45a)

B(q+− q−)= f̃ D+ T (ζ+− ζ−)+ f Rρλ
+ Auµ, (45b)

q++ q−+ Azµ= qy, (45c)

ζ++ ζ− = α1+ Aγ µ, (45d)

M(ζ+− ζ−)= ρ+− ρ−+ Aτµ, (45e)

q+, q−, ζ+, ζ−, ρ+, ρ−, µ≥ 0
}
. (45f)

Let LP∗(C, Jk
0, Jk

1) denote the dual of LP(C, Jk
0, Jk

1) in which some variables are fixed. To obtain
LP∗(C, Jk

0, Jk
1), we modify and simplify (45) as follows:
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(a) For j ∈ Jk
0, the variable τ j in the primal problem (42) is set as τ j = 0. This is realized in the dual

problem as follows:

(i) The j-th row of (42f) should be rewritten as

−t>j u− γ j ≥ 0.

Consequently, the variable ζ−j should be eliminated from the j-th row of (45e).
(ii) The j-th row of (42e) becomes redundant. Hence, the variable ζ+j can be eliminated from (45).

(iii) The j-th row of (42g) becomes redundant. Hence, the variables ρ+j and ρ−j can be eliminated
from (45).

(iv) If the j-th row vector of Aτ is a zero vector, then the constraint (45e) itself can be eliminated.

(b) For j ∈ Jk
1, the variable τ j in the primal problem (42) is set as τ j = 1. This is realized in the dual

problem as follows:

(i) The j-th row of (42e) should be rewritten as

t>j u− γ j ≥ 0.

Consequently, the variable ζ+j should be eliminated from the j-th row of (45e).
(ii) The j-th row of (42f) becomes redundant. Hence, the variable ζ−j can be eliminated from (45).

(iii) The j-th row of (42g) becomes redundant. Hence, the variables ρ+j and ρ−j can be eliminated
from (45).

(iv) If the j-th row vector of Aτ is a zero vector, then the constraint (45e) itself can be eliminated.

Note that the LP (45) originally has (2nm
+ 4m+ nc

+ 1) variables and (nd
+ nm

+ 2m) linear equality
constraints besides side constraints. With the simplification proposed in this section, we can reduce the
number of variables and constraints when some binary variables τ j are fixed in (41).

5. Cutting plane algorithm

It is guaranteed that Algorithm 4.2 converges to a global optimal solution of the mixed 0-1 programming
problem (29). However, it is possible that the algorithm is no better than the enumeration of all binary
variables τ . The efficiency of the algorithm depends partially on the tightness of the LP relaxation
problem solved at each node of the branch-and-bound tree.

5.1. Disjunctive cut generation. To strengthen the LP relaxation problems, we now propose an algo-
rithm that generates the disjunctive cutting planes. Recall that KZ and K, defined in (28) and (27),
correspond to the feasible sets of the mixed 0-1 programming problem (29) and its LP relaxation (38),
respectively. Let (̂u, ẑ, γ̂ , τ̂ ) denote the optimal solution of the LP relaxation (38). Suppose that τ̂ does
not satisfy the binary constraints in KZ, that is,

(̂u, ẑ, γ̂ , τ̂ ) 6∈ KZ.

The cutting plane, then, is an additional linear inequality that the point (̂u, ẑ, γ̂ , τ̂ ) does not satisfy, but
is valid for KZ. If a cutting plane is generated successfully, we can add it to the LP relaxation as the
constraint without cutting off any feasible solution in KZ. If the new optimal solution of the obtained LP
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problem is feasible for KZ, it is a global optimal solution of the original mixed 0-1 program problem (29);
otherwise, we may continue to generate cutting planes.

In the following, the cutting plane generation is performed over the so-called disjunctive programming
relaxation of KZ instead of KZ itself. A valid inequality obtained in this way is called the disjunctive cut
[Ceria and Soares 1997]. We define the sets

Pj (K)= cl conv
{
(u, z, γ , τ ) ∈ K

∣∣ τ j ∈ {0, 1}
}
, j = 1, . . . , m ,

each of which is a disjunctive programming relaxation of the closure of conv KZ. We attempt to find a
linear inequality that cuts off (̂u, ẑ, γ̂ , τ̂ ) but is valid for Pj (K). Although the characterization of Pj (K)

is essentially nonlinear, a polyhedral representation can be obtained easily [Balas et al. 1996; Balas and
Perregaard 2002], that is, the condition

(u, z, γ , τ ) ∈ Pj (K)

is satisfied if and only if there exist

(wu, wz, wγ , wτ ) ∈ C0, w0 ∈ R,

( yu, yz, yγ , yτ ) ∈ C0, y0 ∈ R

satisfying

(u, z, γ , τ )= (wu, wz, wγ , wτ )+ ( yu, yz, yγ , yτ ), (46a)

f >Rwu
= w0, (46b)

wz
− B>wu

≥ 0, wz
+ B>wu

≥ 0, (46c)

T>wu
−wγ

−Mwτ
≥−Mw01, −T>wu

−wγ
+Mwτ

≥ 0, (46d)

0≤ wτ
≤ w01, (46e)

wτ
j ≤ 0, (46f)

f >R yu
= y0, (46g)

yz
− B> yu

≥ 0, yz
+ B> yu

≥ 0, (46h)

T> yu
− yγ

−M yτ
≥−My01, −T> yu

− yγ
+M yτ

≥ 0, (46i)

0≤ yτ
≤ y01, (46j)

yτ
j ≤ y0, (46k)

w0+ y0 = 1. (46l)

We define a set P∗j (K)⊆ C0
×R so that

(αu, αz, αγ , ατ , β) ∈ P∗j (K) (47)
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holds if and only if there exist

(ξλ, ξq+, ξq−, ξ ζ+, ξ ζ−, ξρ+, ξρ−) ∈ C0∗, ξ 0
∈ R,

(ηλ, ηq+, ηq−, ηζ+, ηζ−, ηρ+, ηρ−) ∈ C0∗, η0
∈ R

satisfying

αu = f Rξλ
− B(ξq+

− ξq−)+ T (ξ ζ+
− ξ ζ−), (48a)

αz = ξq+
+ ξq−, (48b)

αγ =−ξ ζ+
− ξ ζ−, (48c)

ατ =−M(ξ ζ+
− ξ ζ−)+ ξρ+

− ξρ−
− ξ 0e j , (48d)

β = ξλ
− 1>(Mξ ζ+

+ ξρ−), (48e)

ξq+, ξq−, ξ ζ+, ξ ζ−, ξρ+, ξρ−, ξ 0
≥ 0, (48f)

αu = f Rηλ
− B(ηq+

− ηq−)+ T (ηζ+
− ηζ−), (48g)

αz = ηq+
+ ηq−, (48h)

αγ =−ηζ+
− ηζ−, (48i)

ατ =−M(ηζ+
− ηζ−)+ ηρ+

− ηρ−
+ η0e j , (48j)

β = ηλ
− 1>(Mηζ+

+ ηρ−)+ η0, (48k)

ηq+, ηq−, ηζ+, ηζ−, ηρ+, ηρ−, η0
≥ 0. (48l)

Then, the following inequality is valid for Pj (K) if it satisfies (47):

(αu, αz, αγ , ατ ) · (u, z, γ , τ )≥ β. (49)

Thus, for a point (̂u, ẑ, γ̂ , τ̂ ) /∈ Pj (K), we are interested in the following problem in the variables
(αu, αz, αγ , ατ , β) ∈ C×R:

max
{
β − (αu, αz, αγ , ατ ) · (̂u, ẑ, γ̂ , τ̂ ) : (αu, αz, αγ , ατ , β) ∈ P∗j (K)

}
, (50)

because a feasible solution of (50) defines a valid inequality (in the form of (49)) for Pj (K), that is
violated at (̂u, ẑ, γ̂ , τ̂ ).

However, since (50) itself is unbounded, some normalization constraints should be appended to it. We
add constraints restricting the magnitude of the vector (αu, αz, αγ , ατ ) [Ceria and Soares 1997]. The
index sets I and I are defined as subsets of {1, . . . , nd

+ nm
+ 2m} by

I=
{

i ∈ {1, . . . , nd
+ nm

+ 2m}
∣∣ (̂u, ẑ, γ̂ , τ̂ )i = 0

}
,

I= {1, . . . , nd
+ nm

+ 2m} \I.
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We assume I 6=∅. We then consider the cut generation problem

(CGLP) j : max
{
β − (αu, αz, αγ , ατ ) · (̂u, ẑ, γ̂ , τ̂ ) :

(αu, αz, αγ , ατ , β) ∈ P∗j (K),

‖(αu, αz, αγ , ατ )I‖∞ ≤ 1
}
,

(51)

where P∗j (K) has been defined in (48). In (51), which is an LP problem, we attempt to find the deepest
cut in the sense that a distance from (̂u, ẑ, γ̂ , τ̂ ) to a separating hyperplane is maximized. The dual to
(51) is formulated as in [Ceria and Soares 1997] as

min
{
‖(u, z, γ , τ )− (̂u, ẑ, γ̂ , τ̂ )‖1 :

(u, z, γ , τ ) ∈ Pj (K),

(u, z, γ , τ )I = (̂u, ẑ, γ̂ , τ̂ )I

}
,

(52)

where Pj (K) has been defined in (46). At the root node of the enumeration tree of Algorithm 4.2, we
employ the following procedure for generating some disjunctive cuts.

Algorithm 5.1. Cut generation for problem (29).

Step 0: Set C0
= Rnm

×Rnd
×Rm

×Rm , J0
res = {1, . . . , m}, J= {1, . . . , m}, and k = 1.

Let (u0, z0, γ 0, τ 0) denote an optimal solution of LP(C0, ∅, ∅).

Step 1: Select j2 ∈ J by

j2 = arg max
j∈J

{
τ k−1

j (1− τ k−1
j )

}
.

Step 2: Solve (CGLP) j2 , with the definition (48) of P∗j (K), at

(̂u, ẑ, γ̂ , τ̂ )= (uk−1, zk−1, γ k−1, τ k−1)

to find an optimal solution (αk
u, α

k
z , α

k
γ , αk

τ , β
k).

Step 3: Letting

Ccur :=

{
(u, z, γ , τ ) ∈ Ck−1

∣∣∣ (αk
u, α

k
z , α

k
γ , αk

τ ) · (u, z, γ , τ )≥ βk
}

,

solve LP(Ccur, ∅, ∅) to find an optimal solution (uk, zk, γ k, τ k).

Step 4: Let

Jk
res =

{
j ∈ {1, . . . , m}

∣∣∣ τ k
j (1− τ k

j ) > ε
}

.

If |Jk
res| ≤ |J

k−1
res |, let Ck

:= Ccur and J := {1, . . . , m}; otherwise,

Ck
:= Ck−1 and J := {1, . . . , m} \ j2.

Step 5: If the termination condition is satisfied, stop; otherwise, update k← k+ 1, and go to Step 1.

Remark 5.2. If Jk
res = ∅ at Step 4, then stop, because the current solution (uk, zk, γ k, τ k) is a global

optimal solution of the original problem (29). However, it often requires large computational time to
solve (29) only by Algorithm 5.1. In practice, we restrict the maximum number of iterations as k ≤ 1.8m
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and then employ Algorithm 4.2. The set of disjunctive cuts Ck generated by Algorithm 5.1 plays a role
in strengthening the LP relaxation problems solved in Algorithm 4.2.

Remark 5.3. At Step 1, as is done in Step 3 of Algorithm 4.2, we select the variable τ j with the largest
residual of the complementarity condition (44). Then the variable τ j2 is used at Step 2 to define the
disjunctive constraint.

5.2. Simplification of cut generating LP. In this section, we further analyze simplifications to the cut
generating LP problem (51), motivated by the fact that in the dual problem (52), we can eliminate some
of variables corresponding to the index set I. Recall that Pj (K) in the constraints of (52) has been
defined in (46). Then we can consider the following points:

(a) For i such that ẑi = 0:
Observe that (αz)i does not contribute to the objective function of (51). By replacing the i-th rows
of (48b) and (48h) with

ξ
q+
i + ξ

q−
i = η

q+
i + η

q−
i , (53)

we can remove the variable (αz)i from (48) without changing the optimal solution. At an optimal
solution, we can complete (αz)i by letting

(αz)i := ξ
q+
i + ξ

q−
i , (54)

where ξ
q+
i and ξ

q−
i are components of the optimal solution obtained. However, instead of (53), we

append more restrictive constraints

ξ
q+
i = η

q−
i , ξ

q−
i = η

q+
i

to (48), which enables us to remove the variables η
q+
i and η

q−
i . Then an optimal solution of the

simplified problem can be completed to an optimal solution of (51) by using (54).

(b) For i such that τ̂i = 0:
In the system of (46), observe that (46a), (46e), (46j), and τ̂i = 0 imply

wτ
i = yτ

i = 0. (55)

(i) Assume that there exists an l ∈ {1, . . . , m} such that τ̂l 6= 0. Then, in the system (46), (55) and
the l-th row of (46e) make the constraint

wτ
i ≤ w0 (56)

redundant. Similarly, it follows from the l-th row of (46j) and (55) that the constraint

yτ
i ≤ y0 (57)

is redundant. Then, we see that eliminating (56) and (57) from (46) is equivalent to eliminating
the variables ξ

ρ−
i and η

ρ−
i from (48).

(ii) In (46), it follows from (55) that the j-th rows of (46d) can be replaced with

t>i wu
−w

γ

i ≥−Mw0, −t>i wu
−w

γ

i ≥ 0
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without changing Pj (K). Then, in (48), the i-th row of (48d) is replaced with

(ατ )i = ξ
ρ+
i − ξ0e j

i . (58)

Similarly, the i-th row of (48j) is replaced with

(ατ )i = η
ρ+
i + η0e j

i . (59)

Note that, in (51), the variables ξ
ρ+
i and η

ρ+
i appear only in the constraints (58) and (59),

respectively. Moreover, (ατ )i does not contribute to the objective function. Consequently, from
(51), we can eliminate the variables (ατ )i , ξ

ρ+
i , and η

ρ+
i and the constraints (58) and (59). From

the nonnegativity of ξ
ρ+
i and η

ρ+
i it follows that an optimal solution of the simplified problem

can be completed to an optimal solution of (51) by defining the eliminated variables as

(ατ )i :=max
{
−ξ 0e j

i , η0e j
i

}
.

The LP problem (51) originally has (nd
+ 5nm

+ 10m+ 3) variables and (2nd
+ 2nm

+ 4m+ 2) linear
equality constraints besides side constraints. However, we shall show in the numerical examples in
Section 6.2 that the simplification proposed in this section greatly reduces the numbers both of variables
and constraints. The size of the simplified problem depends on (̂u, ẑ, γ̂ , τ̂ ), and hence differs at each
iteration of Algorithm 5.1.

6. Numerical experiments

The worst-case limit load factors are computed for trusses by using Algorithms 4.2 and 5.1. Computation
was carried out on a Pentium M (1.5 GHz with 1 GB memory) with MATLAB Version 6.5.1. The LP
problems are solved by using the simplex method at Step 1 of Algorithm 4.2 and at Steps 2 and 3
of Algorithm 5.1. As an implementation of the simplex method, we use MATLAB built-in function
linprog of Optimization Toolbox, Version 2.1 [MATLAB 2000], with the options ‘LargeScale’ set to
‘off’, and ‘Simplex’ set to ‘on’.

In the following examples, the yield stress is σ
y
i = 400 MPa and cross-sectional area is ai = 20.0 cm2

for each member. We set M = 5.0 in Algorithm 4.2 and Algorithm 5.1.

6.1. 3 × 3 truss. Consider a plane truss illustrated in Figure 1, where W = 70.0 cm, H = 50.0 cm,
nd
= 28, and nm

= 42. The nodes (a) and (b) are pin-supported.
As the nominal dead load f̃ D, we apply the external forces (0,−120.0) kN at the nodes (e) and (f)

as shown in Figure 1. Note again that f D represents the sum of conventional live load and dead load.
It is possible that the conventional live load has moderately large magnitude of uncertain variation. In
this case, the level of uncertainty of f D, that is, α in (9), is supposed to be a moderately large value.
The reference disturbance load f R is defined such that (40.0, 0) kN and (20.0, 0) kN, respectively, are
applied at the nodes (c) and (d). The limit load factor under the nominal dead loads is computed as
λ∗( f̃ D) = 48.4 by employing the usual limit analysis, that is, by solving the LP problem (5). The
collapse mode corresponds to the sway-type with horizontal displacements of the joints shown in Figure
2, where the vanishing members experience plastic deformations.
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Figure 1. 3× 3 plane grid truss.

reference 

disturbance load

Figure 2. Collapse mode and the dead load of the 3× 3 truss without the uncertainty in
dead load (λ∗( f̃ D)= 48.4).
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We assume that the uncertain load Tζ can possibly exist at free nodes, so that Assumption 3.1 is
satisfied and the condition

(Tζ )> f̃ D = 0, ζ ∈ Rm (60)

holds with m = 24. Accordingly, the uncertain load Tζ is running through the squares and arrows
depicted with the dotted lines in Figure 1. For α1 = 40.0 kN, the worst-case limit load factor is computed
as λmin(α1) = 37.0 by using Algorithms 4.2 and 5.1. Let ζ cr

1 denote the optimal solution of (13). The
corresponding critical load f D(ζ cr

1 ) and collapse mode are shown in Figure 3.
Figure 3 shows that the collapse mode in the worst case is different from the sway-type mode observed

in the nominal case of Figure 2. On the contrary, for α2 = 20.0 kN, the collapse mode in the worst case
coincides with the sway-type as illustrated in Figure 4. The corresponding worst-case limit load factor is
λmin(α2)= 44.4. The distribution of critical load f D(ζ cr

2 ) is shown in Figure 4, which is different from
the critical load in the case of Figure 3.

We next investigate the variation of the limit load factor by proportionally increasing the uncertain
dead load, that is, we employ the usual limit analyses repeatedly by putting ζ = βζ cr

1 and gradually
increasing β. In Figure 5, the solid curve (A)→(B)→(C) shows the variation of λ∗( f D(βζ 1)) with
respect to β. The collapse mode coincides with the sway-type shown in Figure 2 between the points (A)
and (B), while the mode of Figure 3 is observed between (B) and (C). The variation of λ∗( f D(2βζ cr

2 ))

with respect to β is indicated by the dashed line (A)→(D) in Figure 5. Note that α1 = 2α2 implies
‖ζ cr

1 ‖ = 2‖ζ cr
2 ‖. The collapse mode coincides with the sway type shown in Figure 4 between (A) and

(D). The curve (A)→(E)→(C) corresponds to the variation of the worst-case limit load factor λmin(βα1)

with respect to β. This illustrates that the critical loads as well as the corresponding collapse modes
depend on the level of uncertainty α.

reference 

disturbance load

Figure 3. Collapse mode and the critical load of the 3× 3 truss in the worst case for
α1 = 40.0 kN (λmin(α1)= 37.0).
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reference 

disturbance load

Figure 4. Collapse mode and the critical load of the 3× 3 truss in the worst case for
α2 = 20.0 kN (λmin(α2)= 44.4).
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Figure 5. Limit load factor of the 3×3 truss; λ∗( f D(βζ 1)): solid line; λ∗( f D(2βζ 2)):
dashed line.
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Figure 6. 4× 4 plane truss.

6.2. 4×4 truss. Consider the 68-bar plane truss illustrated in Figure 6, where nm
= 68, nd

= 40, W =
35.0 cm, and H = 50.0 cm. The nodes (a)–(e) are pin-supported. As the nominal dead load f̃ D, we apply
the external forces (0,−800.0) kN at the nodes (i)–(k). The reference disturbance load f R is defined such
that (52.0, 0) kN, (40.0, 0) kN, and (28.0, 0) kN are applied at the nodes (f), (g), and (h), respectively.
The nominal limit load factor is computed as λ∗( f̃ D)= 14.3 by employing the usual limit analysis. The
corresponding collapse mode is shown in Figure 7, where the vanishing members experience plastic
deformations.

In a manner similar to Section 6.1, we assume that the uncertain load Tζ can possibly exist at all free
nodes so that Assumption 3.1 and (60) are satisfied with m = 34. Accordingly, the uncertain load Tζ is
running through the squares and arrows depicted with the dotted lines in Figure 6. We set α = 40.0 kN.
By using Algorithms 4.2 and 5.1, the worst-case limit load factor is computed as λmin(α)= 7.73. The
CPU time required by Algorithm 5.1 is 229.5 sec, and 42 cutting planes are generated within 61 iterations.
Afterward, Algorithm 4.2 terminates by solving only 9 LP problems, where the CPU time required is
28.5 sec. This result demonstrates that the generated cutting planes at the root node of the branch-and-
bound tree can reduce the number of nodes drastically that have to be visited in Algorithm 4.2.

In Step 2 of Algorithm 5.1, the LP problem (51) originally has 723 variables and 354 linear equality
constraints besides side constraints in this example. By using the simplification proposed in Section 5.2,
the problems to be solved have 534 variables and 240 linear equality constraints in average. Thus, the
simplification scheme can reduce the numbers both of variables and constraints drastically. In Step 1
of Algorithm 4.2, the LP problem (45) originally has 315 variables and 176 linear equality constraints
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reference 

disturbance load{

Figure 7. Collapse mode and the dead load of the 4× 4 truss without the uncertainty in
dead load (λ∗( f̃ D)= 14.3).

besides side constraints, because nc
= 42. After applying the simplification proposed in Section 4.3, the

problems to be solved have 309 variables and 174 linear equality constraints in average.
Note that the worst-case limit load factor is almost half of the nominal one, in spite of the fact that

the level of uncertainty α is relatively small compared with the norm of the nominal dead loads vector
f̃ D. The critical load f D(ζ cr) and the corresponding collapse mode are shown in Figure 8 (left). It is
observed from Figure 8 (left) that the collapse mode in the worst case is the same as that in the nominal
case illustrated in Figure 7.

For comparison, we select a sample of the uncertain parameters vector ζ ′ satisfying ‖ζ ′‖∞ = α as the
nodal forces shown in Figure 8 (right). The corresponding limit load factor is λ∗( f D(ζ ′))= 8.43, which
is larger than the worst case. The corresponding collapse mode is shown in Figure 8 (right), which is
different from the mode shown in Figure 8 (left). Thus, it is not easy to find the critical loads vector in
a heuristic way.

We randomly generate a number of ζ satisfying ‖ζ‖∞ = α, and perform conventional limit analyses.
The limit load factors λ∗( f D(ζ )) obtained are plotted in Figure 9. We observe that all generated λ∗(ζ )

are larger than the worst-case limit load factor λ∗(ζ cr)= λmin(α). This supports the assertion that using
our proposed algorithms yields a global optimal solution of the nonconvex problem (13).
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Figure 8. Left: collapse mode and the critical load of the 4× 4 truss in the worst case
for α = 40.0 kN (λmin(α) = 7.73). Right: definition of the dead load with ζ ′ and the
corresponding collapse mode of the 4× 4 truss (λ∗( f D(ζ ′))= 8.43).
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Figure 9. Limit load factor for randomly generated ζ : (solid line) λ∗( f̃ D); (dashed line) λmin(α).
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7. Conclusions

In this paper, we have investigated the worst-case detection in the plastic limit analysis of trusses affected
by unknown-but-bounded dead and live loads. While the imprecisely known dead and live loads are
constrained into a given bounded set, the live or disturbance loads are amplified with the load factor. A
global optimization technique has been presented to compute the worst-case limit load factor as well as
the critical load.

We supposed that the dead and live loads applied to a truss contain bounded errors around the nominal
values. The level, or ‘width’, of uncertain variation is assumed to be known. We defined the worst case
limit load factor as the minimum value among limit load factors attained with some loading patterns
belonging to a given closed set. Then the worst-case detection problem has been formulated as a mixed
0-1 programming problem. To obtain a global optimal solution of the present problem, we have proposed
a cut-and-branch method based on the LP relaxation and the disjunctive cut, where a cutting plane is
generated by solving another LP problem. Since the proposed method converges to a global optimal
solution, it is theoretically guaranteed that there exits no uncertain parameter such that the limit load
factor becomes smaller than the obtained optimal value.

We showed in the numerical examples that the proposed cut-and-branch method can find the worst-
case limit load factors. The comparison with the limit load factors for randomly generated dead and live
loads demonstrates that the limit load factors we obtained correspond to the global optimal solutions of
the mixed 0-1 programming problem presented. We have also illustrated through numerical examples
that the process of cutting plane generation at the root node of the enumeration tree can reduce the number
of LP relaxation problems that should be solved in the successive branch-and-bound procedure, although
no theoretical result is to date available that suggests how many cutting planes should be generated.
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