不確定な外力を受けるトラスの 極限解析に対する大域的最適化手法

寒野 善博 † 竹脇 出 ‡

[†] 東京大学大学院 (数理情報学専攻) [‡] 京都大学大学院 (都市環境工学専攻)

August 31, 2007

不確定外力に対する極限解析

2007 建築学会大会 - 1 / 13

目的

- ●目的
- ●荷重が不確定な極限解析
- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- ●離接カット

• 不確定性解析

- 。 **凸モデル**, インフォ・ギャップ理論, etc.
- 極限解析 (崩壊荷重係数)
 - 。 確率論的な極限解析 [Marti & Stoeckel 04]

[Lloyd Smith, Chuang & Munro 90], [Staat & Heitzer 03]

- 。 非確率論的 (♯)
- worst-case detection
 - o 反最適化 [Elishakoff, Haftka & Fang 94]
 - 2段階計画法 [Cheng et al. 02], [Craig et al. 03]
 - 線形近似を用いない&大域解(#)

目的

- ●目的
- ●荷重が不確定な極限解析
- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

不確定性解析

- o **凸モデル**, インフォ・ギャップ理論, etc.
- 極限解析 (崩壊荷重係数)
 - o 確率論的な極限解析 [Marti & Stoeckel 04]

[Lloyd Smith, Chuang & Munro 90], [Staat & Heitzer 03]

- 非確率論的 (♯)
- worst-case detection
 - o 反最適化 [Elishakoff, Haftka & Fang 94]
 - 2段階計画法 [Cheng *et al.* 02], [Craig *et al.* 03]
 - 。 線形近似を用いない & 大域解 (♯)
- 大域的最適化が自然に要求される問題 (♯)

荷重が不確定な極限解析

- ●目的
- ●荷重が不確定な極限解析
- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

- 付加的な荷重 ζ が存在
 - **崩壊荷重係数が大きく低下**?
 - 崩壊モードが変化?
- - \circ 崩壊荷重係数の最小値と、そのときの ζ を求める

不確定外力に対する極限解析

2007 建築学会大会 - 3 / 13

不確定外力に対する極限解析

2007 建築学会大会 - 4 / 13

*f*_Dの不確定性を考える

● 離接カット

- ●目的
- ●荷重が不確定な極限解析
- 極限解析
- 不確定性モデル
- 不確定な *f*_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- ● 離接カット

 $\boldsymbol{f}_{\mathrm{D}} = \tilde{\boldsymbol{f}}_{\mathrm{D}} + T\boldsymbol{\zeta}$ (LP)

$$\tilde{f}_{\rm D}$$
:公称值
T:定行列

不確定パラメータ

$$\alpha \ge |\zeta_j|, \quad j = 1, \dots, m$$

- *α*: 不確定性の '大きさ'
- $\boldsymbol{f}_{\mathrm{D}} \in \mathcal{F}_{\mathrm{D}}(\alpha)$ **と書く**
- 以下では, *α* は定数とみなす

不確定外力に対する極限解析

2007 建築学会大会 - 5 / 13

不確定な $f_{\rm D}$ の例

- ●目的
- ●荷重が不確定な極
 限解析
- 極限解析
- 不確定性モデル
- 不確定な *f*_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

公称値: *f*_D 不確定な荷重 T ζ が付加的に作用

2007 建築学会大会 - 6 / 13

最悪崩壊荷重係数

●目的

● 荷重が不確定な極 限解析

- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

 $\boldsymbol{\lambda}_{\min}(\boldsymbol{\alpha}) = \min_{\boldsymbol{f}_{\mathrm{D}}} \left\{ \lambda^{*}(\boldsymbol{f}_{\mathrm{D}}) : \boldsymbol{f}_{\mathrm{D}} \in \mathcal{F}_{\mathrm{D}}(\boldsymbol{\alpha}) \right\} \quad (\clubsuit)$ (定義)

- **最適解***f*^{*}_D : クリティカル外乱
- $\lambda^*(m{f}_{
 m D})$: $m{f}_{
 m D}$ に対応する崩壊荷重係数
- (♣) は非凸
 - (\clubsuit)の局所解は λ^* の下界とは限らない
- 大域的最適化の手法が必要

最悪崩壊荷重係数

●目的

● 荷重が不確定な極 限解析

- 極限解析
- 不確定性モデル
- 不確定な *f*_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

 $\boldsymbol{\lambda}_{\min}(\boldsymbol{\alpha}) = \min_{\boldsymbol{f}_{\mathrm{D}}} \left\{ \lambda^{*}(\boldsymbol{f}_{\mathrm{D}}) : \boldsymbol{f}_{\mathrm{D}} \in \mathcal{F}_{\mathrm{D}}(\boldsymbol{\alpha}) \right\} \quad (\clubsuit)$ (定義)

- 最適解 f_{D}^* :クリティカル外乱
- $\lambda^*(m{f}_{
 m D})$: $m{f}_{
 m D}$ に対応する崩壊荷重係数
- (♣)は非凸
 - (\clubsuit)の局所解は λ^* の下界とは限らない
 - 大域解を求めることが工学的に重要
 - · 通常の非線形計画法は使えそうにない
- 大域的最適化の手法が必要

最悪崩壊荷重係数

●目的

● 荷重が不確定な極 限解析

- 極限解析
- 不確定性モデル
- 不確定な *f* _D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- ● 離接カット

● ⇒ 混合 0-1 計画問題 (MIP) に帰着できる:

$$egin{array}{lll} \min & oldsymbol{c}^{\mathrm{T}}oldsymbol{x}\ \mathrm{s.t.} & Aoldsymbol{x} \geq oldsymbol{b}\ \mathbf{R}^n
i oldsymbol{x} \geq oldsymbol{0}\ x_i \in \{0,1\}, & i=1,\ldots,p \end{array}$$

不確定外力に対する極限解析

2007 建築学会大会 - 7 / 13

- ●目的
- 荷重が不確定な極
 限解析
- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

 $\begin{array}{ll} \min \quad \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x}\\ \mathrm{s.t.} \quad A\boldsymbol{x} \geq \boldsymbol{b}\\ \mathbf{R}^{n} \ni \boldsymbol{x} \geq \boldsymbol{0}\\ x_{i} \in \{0,1\}, \quad i=1,\ldots,p \end{array}$

- 分枝カット法
 - '分枝限定法' + '切除平面法'
 - 分枝限定法
 - 線形計画 (LP) 緩和

 $x_i \in \{0, 1\} \quad \longrightarrow \quad 0 \le x_i \le 1$

- 切除平面法
 - 離接カット (disjunctive cut) [Balas 74, 98]

不確定外力に対する極限解析

2007 建築学会大会 - 9 / 13

不確定外力に対する極限解析

例題 (28 自由度, 42 部材)

不確定外力に対する極限解析

2007 建築学会大会 - 9 / 13

例題 (28 自由度, 42 部材)

不確定外力に対する極限解析

• 目的

限解析

• 結論

2007 建築学会大会 - 9 / 13

例題 (28 自由度, 42 部材)

• 目的 $-: \lambda^*(\beta \boldsymbol{f}_{D1}^*) \quad -: \lambda^*(2\beta \boldsymbol{f}_{D2}^*)$ 荷重が不確定な極 クリティカル外乱, 最悪値, モード: α に依存 限解析 • 極限解析 50 不確定性モデル ● 不確定な **f**_D の例 (A) ● 最悪崩壊荷重係数 48 • 混合 0-1 計画問題 ● 42 部材トラス **(B)** 46 ● 68 部材トラス • 結論 44 ● 離接カット \sim 42 40 **(E)** 38 (\mathbf{C}) α_1 36 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 β

2007 建築学会大会 - 9 / 13

 $\alpha_1 \alpha_2$

不確定外力に対する極限解析

例題 (40 自由度, 68 部材)

- ●目的
- 荷重が不確定な極 限解析
- 極限解析
- 不確定性モデル
- 不確定な *f*_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- ٠
- 離接カット

• $\boldsymbol{f}_{\mathrm{D}}$ が不確定 公称値: $\lambda^{*}(\tilde{\boldsymbol{f}}_{\mathrm{D}}) = 14.3$

V(j) (k) (i) $J_{\rm R}$ Η $f_{\rm R}$ |H| $f_{\rm R}$ |H||H|____(b) $\Delta(c) \qquad \Delta(d)$ $\Delta(e)$ x $\Delta(a)$

不確定外力に対する極限解析

2007 建築学会大会 - 10 / 13

例題 (40 自由度, 68 部材)

- ●目的
- ●荷重が不確定な極
 限解析
- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- ٠
- 離接カット

最悪値: λ_{min}(α₁) = 7.73 α₁ = 40.0 kN
カット: 34, B&B: 9 LPs

不確定外力に対する極限解析

2007 建築学会大会 - 10 / 13

例題 (40 自由度, 68 部材)

- ●目的
- ●荷重が不確定な極
 限解析
- 極限解析
- 不確定性モデル
- 不確定な *f*_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

ランダムに生成した外力に対する崩壊荷重係数

不確定外力に対する極限解析

2007 建築学会大会 - 10 / 13

- 極限解析
 - 外力の不確定性(非確率論的)
 - 最悪崩壊荷重係数・クリティカル外乱を定義
 - 大域的最適化 (分枝カット法)
 - 混合 0-1 計画問題
 - 。 離接カットを生成する LP 問題
 - 最悪ケース
 - 崩壊荷重係数が大きく低下
 - 。 崩壊モードが変化
 - 。 最悪荷重は自明ではない

- 目的
- 荷重が不確定な極 限解析
- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

- ●目的
- ●荷重が不確定な極限解析
- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

2007 建築学会大会 - 13 / 13

- ●目的
- 荷重が不確定な極限解析
- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- ٠
- 離接カット

不確定外力に対する極限解析

2007 建築学会大会 - 13 / 13

- ●目的
- 荷重が不確定な極
 限解析
- 極限解析
- 不確定性モデル
- 不確定な **f**_D の例
- 最悪崩壊荷重係数
- 混合 0-1 計画問題
- 42 部材トラス
- 68 部材トラス
- ●結論
- •
- 離接カット

離接計画緩和とカット

不確定外力に対する極限解析

2007 建築学会大会 - 13 / 13