Robust Truss Topology Optimization under Uncertain Loads by Using Penalty Convex-Concave Procedure

Yoshihiro Kanno

(Tokyo Institute of Technology)

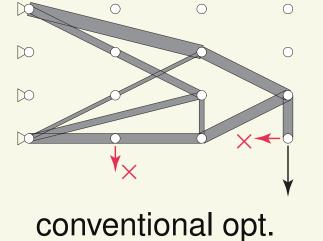
June 8, 2017

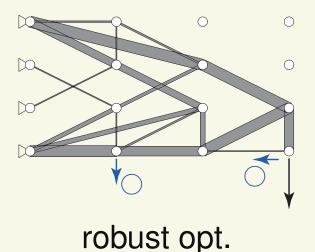
robustness against uncertainty in external load

- robust truss topology optimization
 - a new modeling
 - semidefinite programming w/ complementarity constraints
 - an efficient heuristic
 - CCCP (concave-convex procedure)

robust topology optimization

- against uncertainty in external load
 - Continuum [Cherkaev & Cherkaev '03, '08], [Guo, Bai, Zhang, Gao '09] [de Gournay, Allaire, & Jouve '08], [Guo, Du, & Gao '11]
 [Takezawa, Nii, Kitamura, & Kogiso '11], [Holmberg, Thore, & Klarbring '15]
 - truss [Ben-Tal & Nemirovski '97], [Yonekura & K. '10], [K. & Guo '10]
- methodology
 - specify set of uncertain loads
 - minimize worst-case compliance

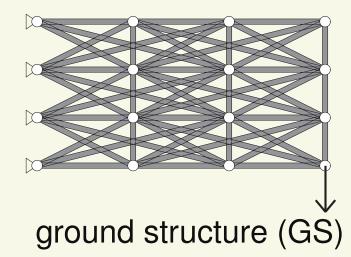


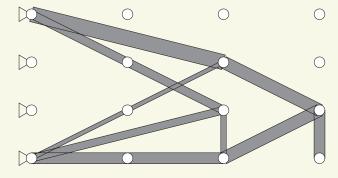


• min. worst-case compliance

[Ben-Tal & Nemirovski '97]

• uncertain loads at all nodes, in all directions



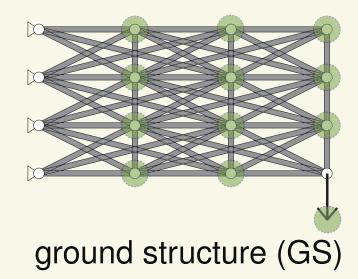


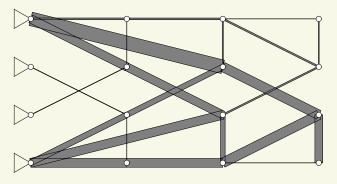
conventional (nominal) opt.

• min. worst-case compliance

[Ben-Tal & Nemirovski '97]

• uncertain loads at all nodes, in all directions



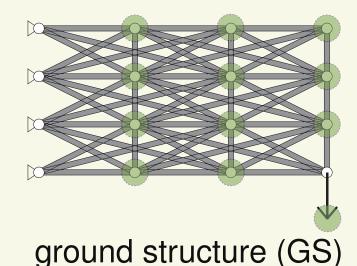


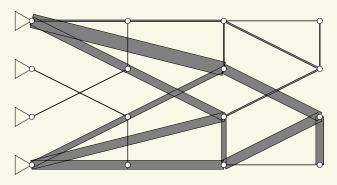
robust opt.

• min. worst-case compliance

[Ben-Tal & Nemirovski '97]

• uncertain loads at all nodes, in all directions





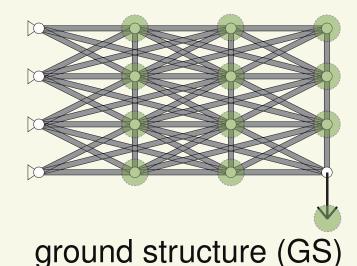
robust opt.

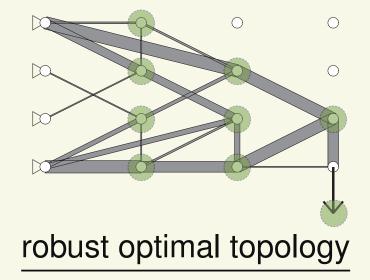
- design-independent uncertainty model
 - all nodes remain \Rightarrow topology is not optimized

• min. worst-case compliance

[Ben-Tal & Nemirovski '97]

• uncertain loads at all nodes, in all directions





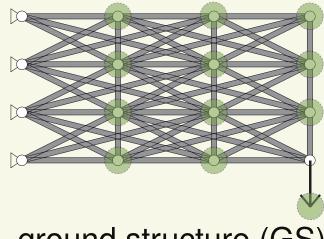
- design-independent uncertainty model
 - all nodes remain \Rightarrow topology is not optimized
- \rightarrow topology-dependent uncertainty model

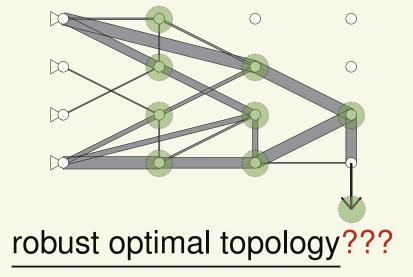
[Yonekura & K. '10], [K. & Guo '10]

• min. worst-case compliance

[Ben-Tal & Nemirovski '97]

• uncertain loads at all nodes, in all directions





- ground structure (GS)
- design-independent uncertainty model
 - all nodes remain \Rightarrow topology is not optimized
- \rightarrow topology-dependent uncertainty model

[Yonekura & K. '10], [K. & Guo '10]

uncertainty model

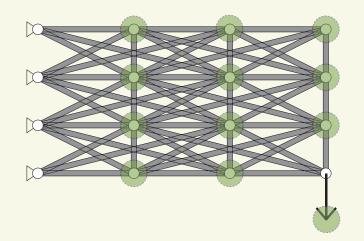
• ellipsoidal uncertainty

[Ben-Tal & Nemirovski '97]

(Q:constant matrix)

 $\bar{\mathcal{F}} = \{ Q\boldsymbol{e} \mid 1 \ge \|\boldsymbol{e}\| \}$

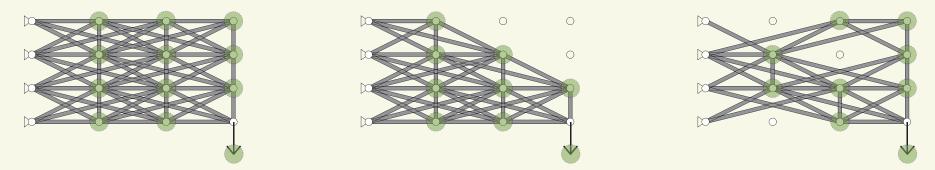
- \rightarrow semidefinite programming (SDP)
- uncertain force at all nodes



uncertainty model

• ellipsoidal uncertainty [Ben-Tal & Nemirovski '97] $\bar{\mathcal{F}} = \{Qe \mid 1 \ge \|e\|\}$ (Q:constant matrix)

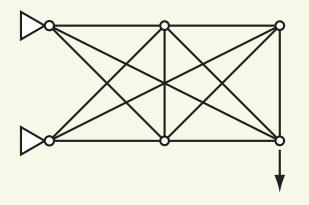
- \rightarrow semidefinite programming (SDP)
- topology-dependent model [Yonekura & K. '10], [K. & Guo '10] $\mathcal{F}(s) = \{ \operatorname{diag}(s) Qe \mid 1 \ge \|e\| \}$
 - $s_j = \begin{cases} 1 & \text{if the } j \text{th DOF exists} \\ 0 & \text{if the } j \text{th DOF is removed} \end{cases}$



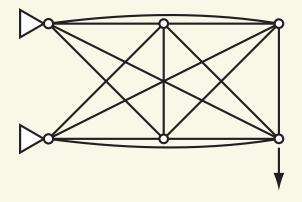
• \rightarrow mixed-integer semidefinite programming (MISDP)

more on topology optimization

• on overlapping members in ground structure



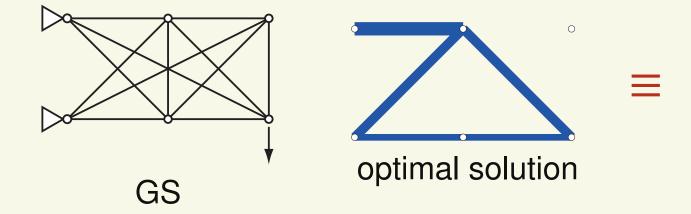
GS w/o overlapping members



GS w/ overlapping members

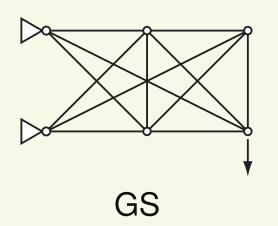
chain & hinge cancelation

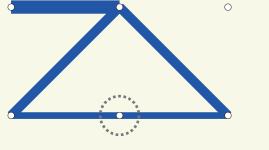
- nominal (=conventional) compliance minimization
 - use GS w/o overlapping members



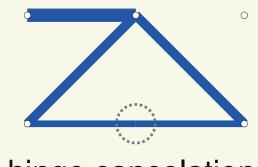
chain & hinge cancelation

- nominal (=conventional) compliance minimization
 - use GS w/o overlapping members





optimal solution (having a chain)

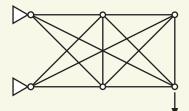


hinge cancelation

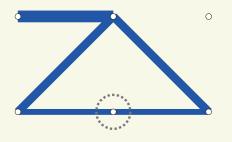
- chain:
 - a set of sequential parallel members
- hinge cancelation:
 - replace a chain by a single member
 - no change in objective value

nominal vs. robust optimization

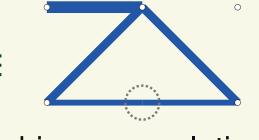
• nominal opt.



GS w/o overlapping



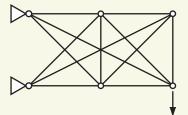
optimal solution



hinge cancelation

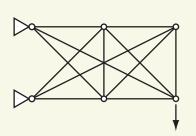
nominal vs. robust optimization

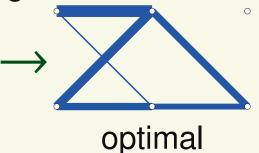
• nominal opt.

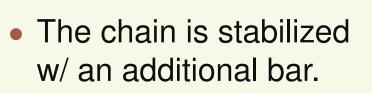


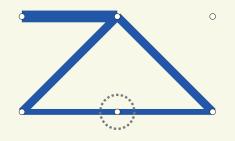
GS w/o overlapping

- robust opt.
 - GS w/o overlapping

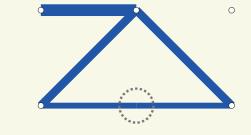








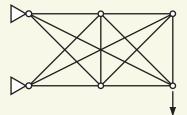
optimal solution



hinge cancelation

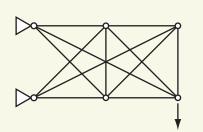
nominal vs. robust optimization

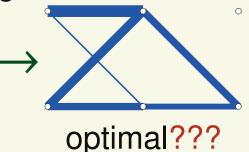
• nominal opt.



GS w/o overlapping

- robust opt.
 - GS w/o overlapping

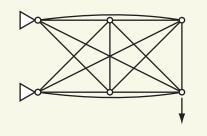


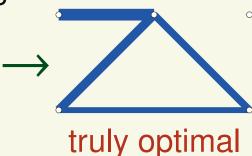


optimal solution

0

GS w/ overlapping





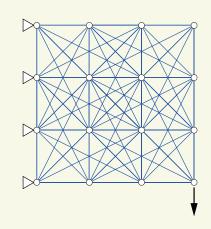
hinge cancelation

 The chain is stabilized w/ an additional bar.

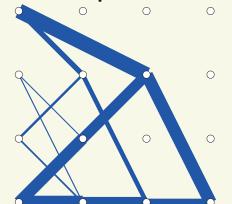
• The single long bar is chosen instead of the chain.

more ex. on overlapping members in GS

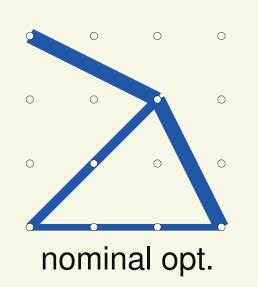
problem setting

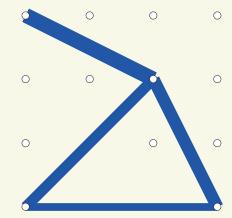


• robust opt.



from GS w/o overlapping obj = 3259.1 J

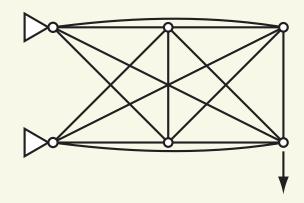




from GS w/ overlapping obj = 2442.7 J

- uncertain load: at all existing nodes
- Overlapping in a solution is prohibited.
- GS w/ overlapping members yields a better solution.

- robust truss topology opt.
 - GS should include overlapping members, but...
 - the solution should not include overlapping members.



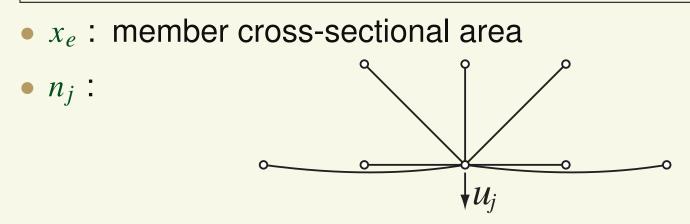
new modeling (1/3)

• multiplier for uncertain load $s_j \in [0, 1]$:

$$s_j = \begin{cases} 1 & \text{if the } j \text{th DOF exists} \\ 0 & \text{if the } j \text{th DOF is removed} \end{cases}$$

• sum of c-s areas of members connected to the *j*th DOF:

$$n_j = \sum_{e \in N(j)} x_e$$



• complementarity:

 $(1-s_j)n_j=0$

Y. Kanno (WCSMO 12)

new modeling (2/3)

• multiplier for uncertain load $s_j \in [0, 1]$:

$$s_j = \begin{cases} 1 & \text{if the } j \text{th DOF exists} \\ 0 & \text{if the } j \text{th DOF is removed} \end{cases}$$

• sum of c-s areas of members lying across the *j*th DOF:

$$a_j = \sum_{e \in A(j)} x_e$$

•
$$a_j$$
:

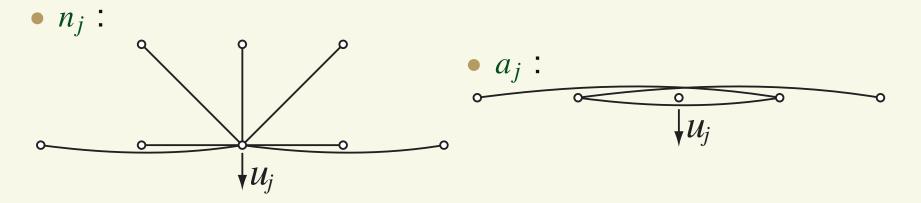
• complementarity:

$$s_j a_j = 0$$

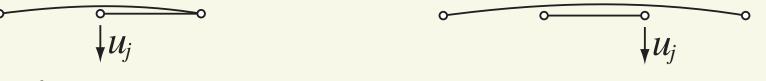
new modeling (3/3)

• complementarity:

$$(1 - s_j)n_j = 0, \quad s_j a_j = 0$$
 (•)



• overlapping cases:



• observation:

$$n_j > 0 \implies s_j = 1, \qquad a_j > 0$$

 \therefore (\blacklozenge) is not satisfied.

upshot

- complementarity constraints:
 - representing topology-dependent uncertain loads
 - avoiding presence of overlapping members
- existing formulation (GS w/o overlapping)
 - convex opt. (semidefinite programming) [Ben-Tal & Nemirovski '97]

upshot

- complementarity constraints:
 - representing topology-dependent uncertain loads
 - avoiding presence of overlapping members
- existing formulation (GS w/o overlapping)
 - convex opt. (semidefinite programming) [Ben-Tal & Nemirovski '97]
- new formulation
 - convex opt. w/ complementarity constraints
 - ...difficult to solve globally...

a simple heuristic

- CCCP (concave-convex procedure)
 - also known as (and related to)...
 - convex-concave procedure
 - DCA (difference-of-convex algorithm) [Pham Dinh & Le Thi '97]
 - EM (expectation-maximization) algorithm

[Dempster, Laird, & Rubin '77]

- MM (majorization-minimization) algorithm
 - frequently used in machine learning & image processing [Hunter & Lange '00], [Figueiredo, Bioucas-Dias, & Nowak '07]
 [Sriperumbudur, Torres, & Lanckriet '11], [Sun, Babu, & Palomar '17]
- a heuristic for DC (difference-of-convex) programming

• convex optimization w/ complementarity constraints:

$$\begin{array}{ll} \mathsf{Min.} & f(\boldsymbol{x}) \\ \mathsf{s.\,t.} & (\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \in \mathcal{Q}, \\ & \boldsymbol{y},\boldsymbol{z} \geq \boldsymbol{0}, \ \boldsymbol{y}^{\top}\boldsymbol{z} = \boldsymbol{0} \end{array}$$

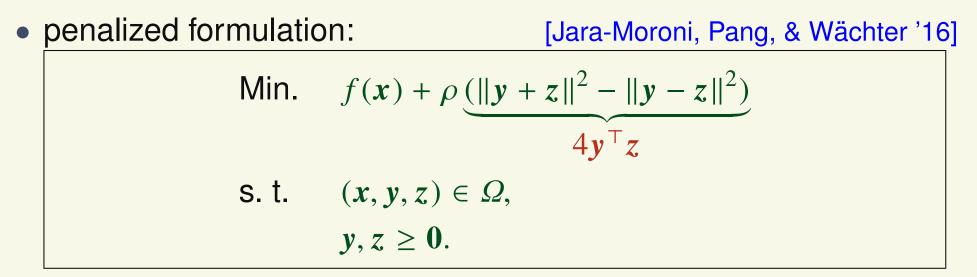
• f : convex fctn. Ω : convex set

convex optimization w/ complementarity constraints:

Min.
$$f(x)$$

s. t. $(x, y, z) \in \Omega$,
 $y, z \ge 0, y^{\top} z = 0$.

• f : convex fctn. Ω : convex set



• ρ : penalty parameter (sufficiently large)

convex optimization w/ complementarity constraints:

Min.
$$f(x)$$

s. t. $(x, y, z) \in \Omega$,
 $y, z \ge 0, y^{\top} z = 0$.

- f : convex fctn. Ω : convex set
- penalized form—DC program [Jara-Moroni, Pang, & Wächter '16] Min. $f(x) + \rho ||y + z||^2 - \rho ||y - z||^2$ CONVEX S. t. $(x, y, z) \in \Omega$, $y, z \ge 0$.
 - ρ : penalty parameter (sufficiently large)
 - DC = "difference of convex"

convex optimization w/ complementarity constraints:

Min.
$$f(\mathbf{x})$$

s. t. $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \Omega$,
 $\mathbf{y}, \mathbf{z} \ge \mathbf{0}, \ \mathbf{y}^{\top} \mathbf{z} = 0$.

- f : convex fctn. Ω : convex set
- proposed method:

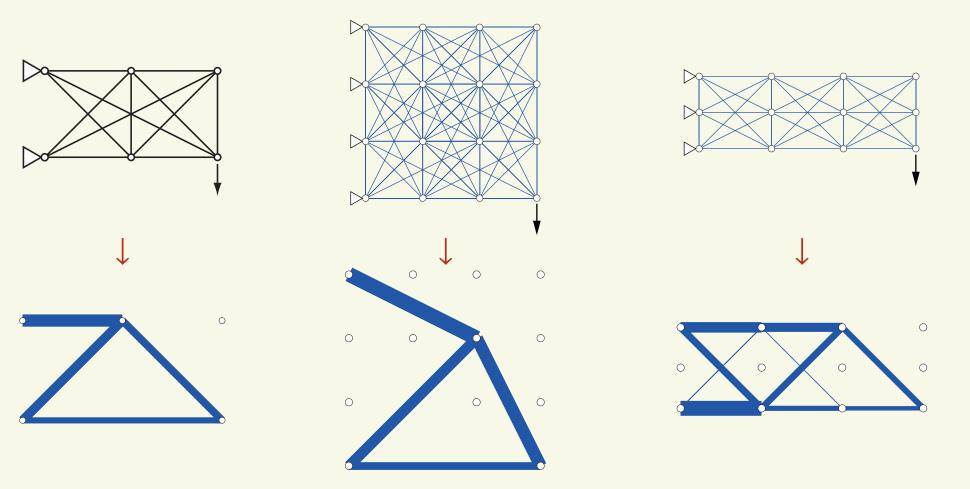
Min.
$$\underbrace{f(x) + \rho_k \|y + z\|^2}_{\text{CONVEX}} - \underbrace{\rho_k \|y - z\|^2}_{\text{linearize at } (y_k, z_k)}$$

s. t. $(x, y, z) \in \Omega$,
 $y, z \ge 0$.

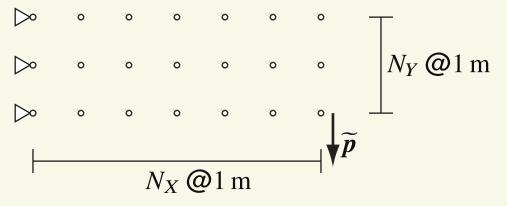
- at each iteration: solve a convex subproblem
- ρ_k : gradually increased

num. expt. (1): small-size instances

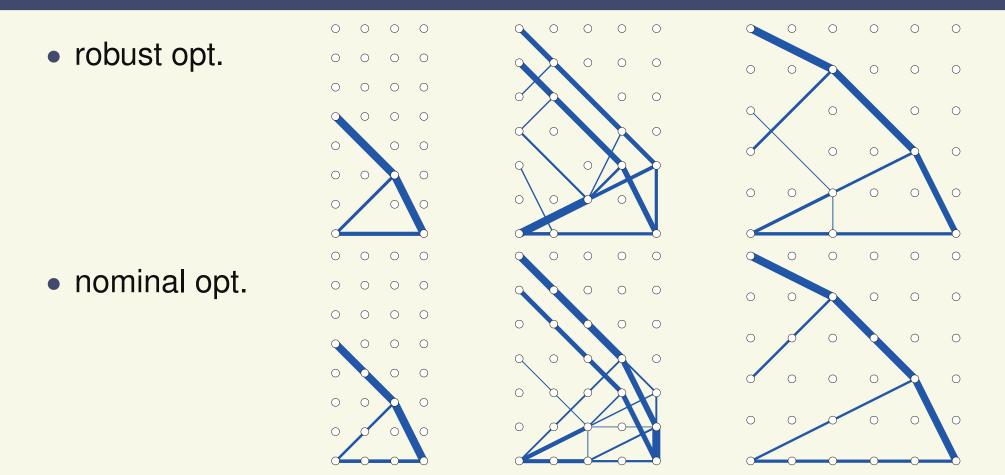
- comparison w/ branch-and-bound method (YALMIP)
 - GS w/ overlapping members
 - The proposed method converges to global opt.



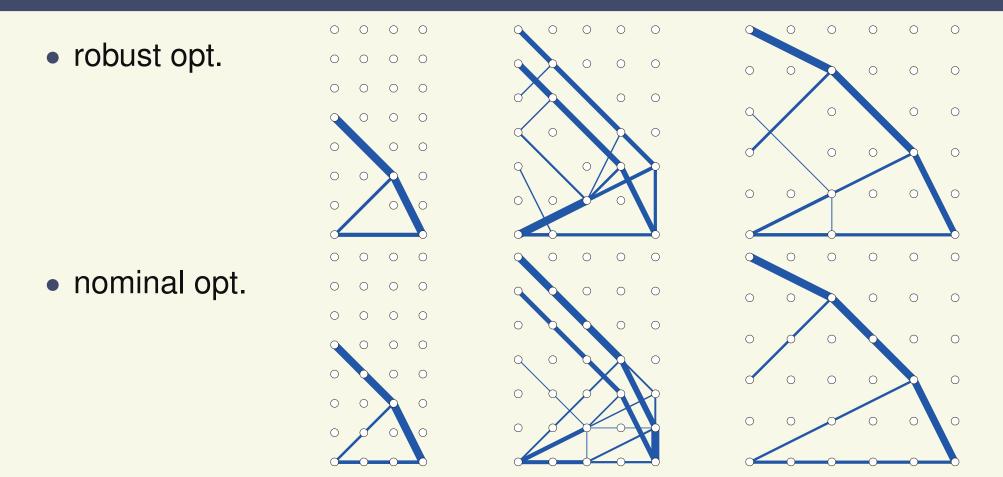
problem setting



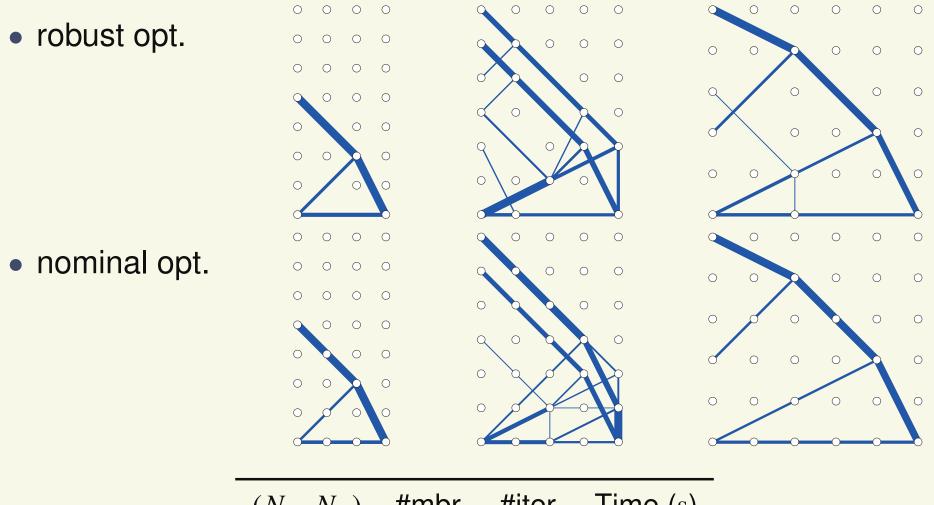
- uncertainty in external load
 - \widetilde{p} : nominal load
- avoiding thin members: $x_i \in \{0\} \cup [\underline{x}, \overline{x}]$
- avoiding too long members:
 - "Members > 3 m" were in advance removed from GS.



- Nominal opt.:
 - possibly has a very long chain.

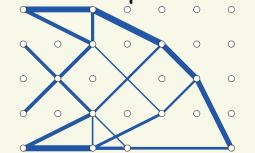


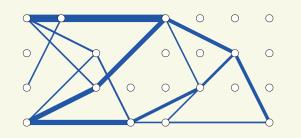
- In robust opt.:
 - Chains are replaced by long single members.
 - (max. mbr. length in sol.) \leq (max. mbr. length in GS) = 3 m.
 - Otherwise, infeasible.

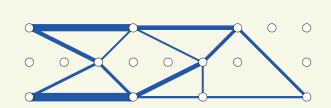


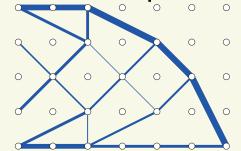
(N_X, N_Y)	#mbr.	#iter.	Time (s)
(3,7)	250	9	46.4
(4.6)	292	39	242.9
(5,5)	306	35	249.6

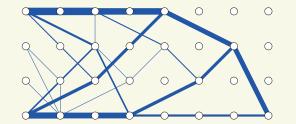
• robust opt.





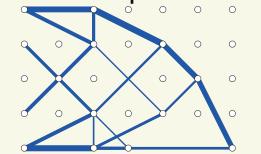


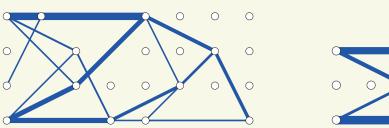


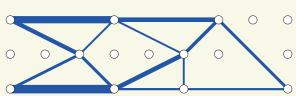


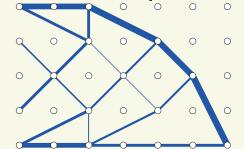
- Nominal opt.:
 - may have long chains.
 - may have very thin members.

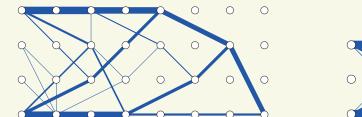
• robust opt.

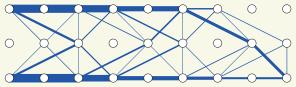






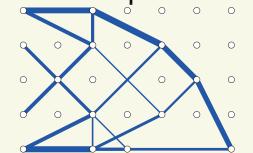


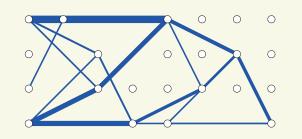


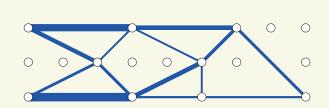


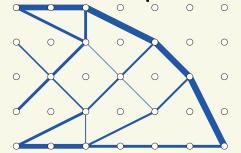
- In robust opt.:
 - Chains are replaced by long single members.
 - (max. mbr. length in sol.) \leq (max. mbr. length in GS) = 3 m.
 - No thin member (∵ lwr. bnd. cstr. for mbr. area).

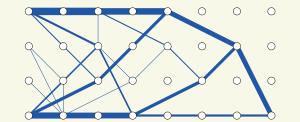
• robust opt.





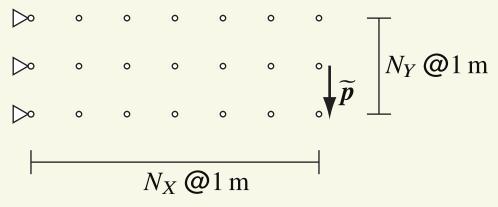






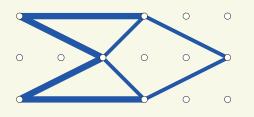
(N_X, N_Y)	#mbr.	#iter.	Time (s)
(6,4)	292	21	142.1
(7.3)	250	40	193.9
(8,2)	180	32	103.9

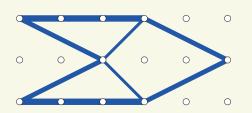
problem setting

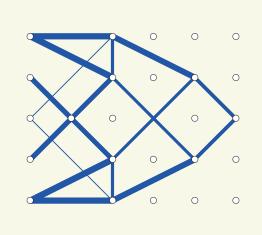


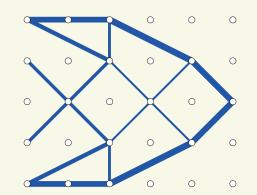
- uncertainty in external load
 - \widetilde{p} : nominal load
- avoiding thin members: $x_i \in \{0\} \cup [\underline{x}, \overline{x}]$
- avoiding too long members:
 - "Members > 3 m" were in advance removed from GS.

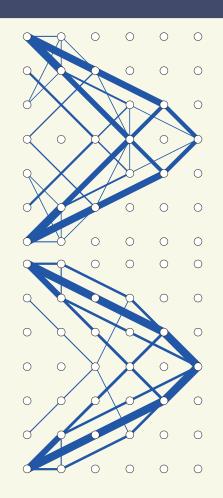
• robust opt.





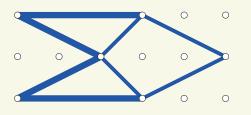




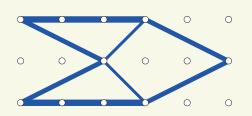


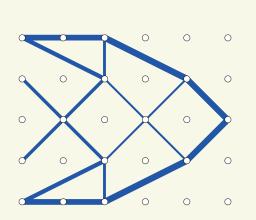
- In robust opt.:
 - Chains are replaced by single members.

• robust opt.



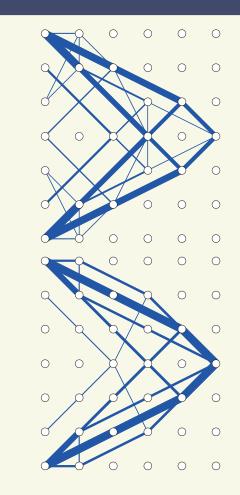
• nominal opt.





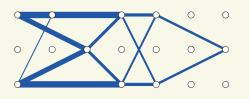
 $^{\circ}$

 $^{\circ}$

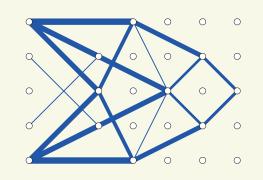


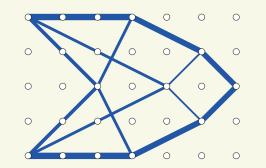
(N_X, N_Y)	#memb.	#iter.	Time (s)
(5,2)	108	18	25.0
(5,4)	240	16	62.1
(5,6)	372	26	212.8

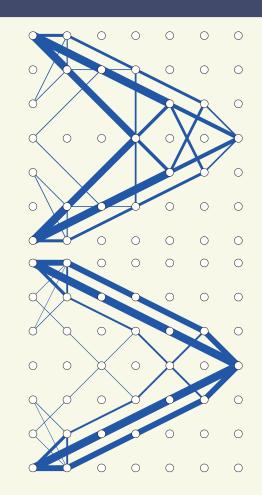
• robust opt.





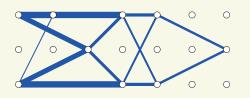




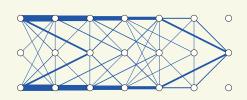


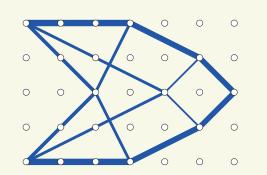
- In robust opt.:
 - Chains are replaced by single members.
 - Too thin members are disappeared.
 - Less nodes means less uncertain external forces.

• robust opt.



• nominal opt.





0

0

0

 $^{\circ}$

Q

0

0

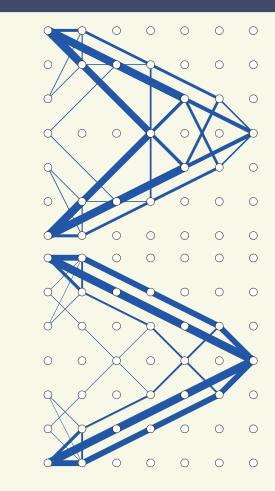
0

0

 $^{\circ}$

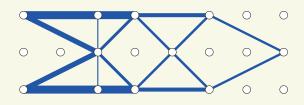
0

0

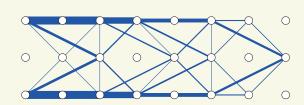


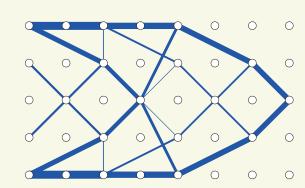
(N_X, N_Y)	#memb.	#iter.	Time (s)
(6,2)	132	43	70.4
(6,4)	292	19	113.9
(6,6)	452	19	208.0

• robust opt.



• nominal opt.





 \cap

0

 \bigcirc

 \bigcirc

0

 \bigcirc

 \bigcirc

0

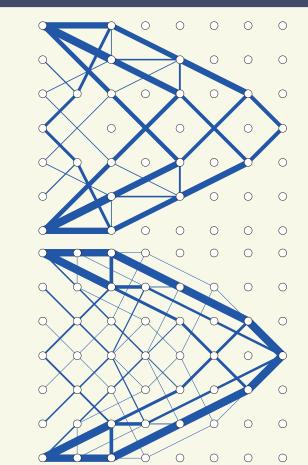
0

0

 \bigcirc

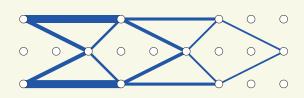
 \bigcirc

0

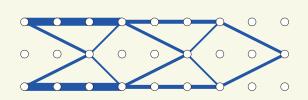


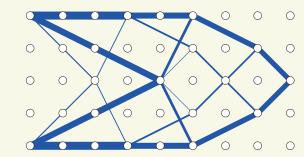
(N_X, N_Y)	#memb.	#iter.	Time (s)
(7,2)	156	18	87.7
(7,4)	344	40	320.6
(7,6)	532	15	226.7

• robust opt.



• nominal opt.





 \cap

 \bigcirc

Q

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

Ο

0

 \bigcirc

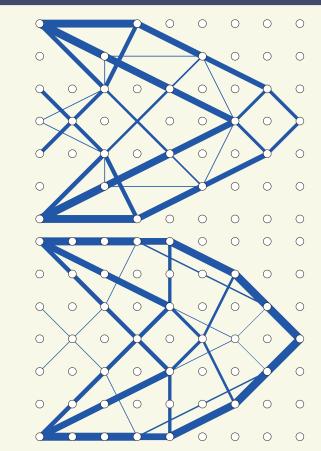
 \bigcirc

0

 \bigcirc

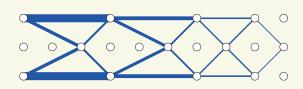
 \bigcirc

0

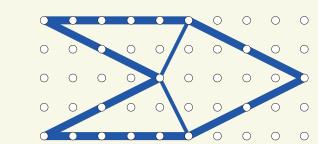


(N_X, N_Y)	#memb.	#iter.	Time (s)
(8,2)	180	23	64.5
(8,4)	396	37	440.0
(8,6)	612	32	632.0

• robust opt.



• nominal opt.



 \bigcirc

 \bigcirc

 \bigcirc

Ο

 \bigcirc

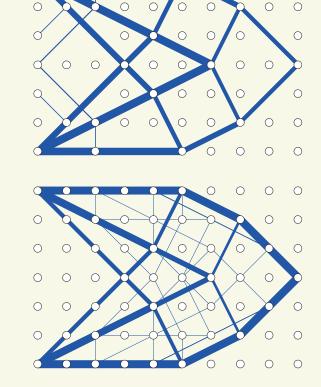
 \bigcirc

0

0

 \bigcirc

 \bigcirc



 \bigcirc

 \bigcirc

 \bigcirc

- In robust opt.:
 - Chains are replaced by long single members.

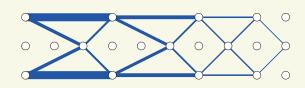
 \bigcirc

 \bigcirc

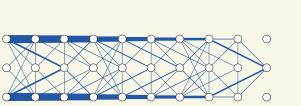
 \bigcirc

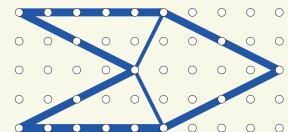
- (max. mbr. length in sol.) \leq (max. mbr. length in GS) = 3 m.
- Less nodes means less uncertain external forces.

• robust opt.



• nominal opt.





 \bigcirc

d

 \bigcirc

0

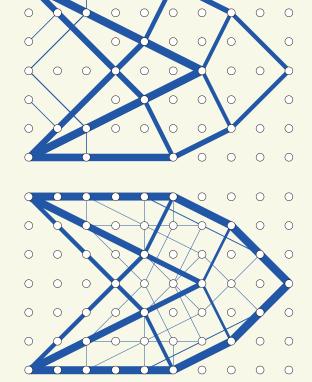
0

 \bigcirc

 \bigcirc

0

 \bigcirc



 \bigcirc

0 0

 \bigcirc

(N_X, N_Y)	#memb.	#iter.	Time (s)
(9,2)	294	28	100.7
(9,4)	448	24	286.4
(9,6)	692	35	863.0

conclusions

- robust truss topology optimization against load uncertainty
 - topology-dependent uncertainty
 - uncertain loads at all existing nodes
 - overlapping members
 - should be included in aground structure, but,
 - presence in a solution should be prohibited.
- formulation
 - SDPCC (semidefinite program w/ complementarity constraints)
 - equivalent DC (difference-of-convex) programming
- efficient heuristic
 - concave-convex procedure
 - popular in data science