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1. Introduction.
In structural and mechanical design, many conventional deterministic design optimization mod-

els have been successfully developed. Recently, the robust optimal design has received increasing
attention, which may yield a system response that is less sensitive to uncertainties of various kinds
of parameters. A number of reliability-based optimization methods as well as the robust optimal
design methods have been developed for the structural and mechanical designs [5, 11–14, 18, 22–24].

Based on the stochastic uncertainty model of mechanical parameters, various methods were
proposed for reliability-based optimization. The structural optimization by minimizing the failure
probability was studied, where the failure probability was estimated by using the Monte-Carlo sim-
ulation [22, 26] with the response-surface approximation [24]. In order to reduce the computational
cost in the evaluation of the failure probability, the reliability index approach was utilized [12, 18].
Various formulations for sensitivity analysis of probabilistic constraints were also proposed [9, 14].
Doltsinis and Kang [11] performed the multi-objective optimization so as to minimize both the
expected value and the standard deviation of the goal performance.

On the other hand, as a non-probabilistic but bounded uncertainty model, the so-called convex
model has been developed [3]. A unified methodology of robust counterpart of the various convex
optimization problems was reviewed by Ben-Tal and Nemirovski [7]. Calafiore and El Ghaoui [8]
proposed a method for finding the ellipsoidal bound of the solution set of uncertain linear equations
based on the semidefinite programming relaxation. For further application of the robust optimiza-
tion, see [4, 5]. In the field of structural optimization, Pantelides and Ganzerli [23] proposed a truss
optimization method by using the convex model for uncertainties. Han and Kwak [13] attempted
to find the design which minimizes the infinity norm of a vector of sensitivity coefficients of the
performance functions.

Recently, based on the info-gap decision theory, the concept of robustness function was proposed
by Ben-Haim [2]. The robustness function expresses the degree of the immunity to failure, or,
the greatest level of non-probabilistic uncertainty at which any constraint in a mechanical system
cannot be violated. The robustness function has the advantage, compared with the reliability
based on a stochastic uncertainty model, such that engineers do not have to estimate neither the
level of uncertainty nor the probabilistic distribution of uncertain parameters in order to evaluate
the robustness of a structure, i.e., the robustness function does not require any information on
statistical variation of the design parameters, which is often difficult to obtain practically. However,
it is difficult to compute the robustness functions in the sense that we have to solve an optimization
problem with infinitely many constraint conditions. This prevents us from applying the info-gap
decision theory [2] to the reliability design of structural and mechanical systems. Hence, it is strongly
desired to develop efficient methods for computing the robustness functions.

In this paper, we propose a computable reformulation of robustness functions of linear elastic
trusses associated with stress constraints. Under the uncertainties of external forces, it is shown
that the robustness functions can be exactly found, where the computational costs are bounded by
the polynomial of the dimensions of system and uncertainty parameters.

Our approach in this paper is summarized as follows. We first show that the robustness function
can be obtained as the optimal objective value of an optimization problem with finite number of
variables and infinitely many constraint conditions. Secondly, by using the strong duality theory of
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the second-order cone programming (SOCP) problem [1], we reformulate the present problem to a
numerically tractable form without any variable.

This paper is organized as follows. In Section 2, in order to make this paper self-contained,
we introduce the concept of robustness functions proposed in [2], and the strong duality theorem
of SOCP [1]. Section 3 investigates a simple truss example analytically in order to explain the
engineering meaning of robustness functions more clearly. In Section 4, we formulate a mathematical
programming problem with some variables and infinitely many constraint conditions such that the
optimal objective value coincides with the robustness function of trusses associated with stress
constraints. A tractable reformulation of the present problem is proposed in Section 5 by using the
strong duality of SOCP. In Section 6, the robustness functions of trusses with various uncertainty
sets are obtained by using the proposed formulations.

2. Preliminaries.

Throughout the paper, all vectors are assumed to be column vectors. However, for vectors
p ∈ Rn and q ∈ Rm, we often write

(p,q) = (p�,q�)� ∈ Rn+m

in order to simplify the notation. The standard Euclidean norm ‖p‖2 = (p�p)1/2 of a vector
p ∈ Rn is often abbreviated by ‖p‖. ‖p‖∞ and ‖p‖1, respectively, denote the l∞-norm and l1-norm
of p = (pi) ∈ Rn defined as

‖p‖∞ = max
i∈{1,...,n}

|pi|, (1)

‖p‖1 =
n∑

i=1

|pi|. (2)

Sn ⊂ Rn×n denotes the set of all n × n real symmetric matrices.

2.1. Robustness function.
Let x ∈ Rm denote the vector of design variables of a structure. ζ ∈ Rn denotes the parameter

vector that is considered to be uncertain, or, inexact. For a given α ≥ 0, ζ is assumed to be running
through a given uncertain set Z(α) = {ζ} ⊂ Rn. Throughout this paper, we make the following
assumption:

Assumption 2.1.

(i) Z(0) = {0};

(ii) If 0 ≤ α1 < α2, then Z(α1) ⊂ Z(α2).

Roughly speaking, Assumption 2.1 implies that ζ ∈ Z(α) perturbs around the origin with the
‘width’ of α. For a given ζ0 ∈ Z(α), suppose that the constraints on the structure are written as

g(x, ζ0) − rcq ≥ 0, (3)
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where q ∈ Rk and rc ∈ R are constant, gi : Rm × Rn �→ R, and g = (gi)ki=1. Then the robustness
function α̂ : Rm+1 �→ (−∞,+∞] associated with the constraints (3) is defined by (see, e.g., [2,
Ch. 3])

α̂(x, rc) = max{α : g(x, ζ) − rcq ≥ 0 (∀ζ ∈ Z(α))}. (4)

We write α̂(x, rc) = 0 if the feasible set of Problem (4) is empty. In what follows, α̂(x, rc) is often
abbreviated by α̂. For the two different sets of design variables x1 ∈ Rm and x2 ∈ Rm, we say that
x1 is more robust than x2 if α̂(x1, rc) > α̂(x2, rc). If ζ1 ∈ Z(α̂(x1, rc)) satisfies

∃i ∈ {1, . . . , k} s.t. gi(x1, ζ1) − rcqi = 0,

then we say that ζ1 is the worst case.

2.2. Strong duality theorem of second-order cone program.
Let Rn

+ ⊂ Rn and Ln
+ ⊂ Rn denote the non-negative orthant and the second-order cone (or

Lorentz cone) [1], respectively, which are defined as

Rn
+ = {p = (p1, . . . , pn) ∈ Rn|pi ≥ 0 (i = 1, . . . , n)},

Ln
+ = {p = (p0,p1) ∈ R1 × Rn−1|p0 ≥ ‖p1‖2}.

Let

Ki = Rki
+ or Lki

+ (i = 1, . . . , n),

and k :=
∑n

i=1 ki. The second-order cone programming (SOCP) problem [1] refers to the optimiza-
tion problem having the form of

(PSOCP) : min
n∑

i=1

c�i xi

s.t.
n∑

i=1

Aixi = b, xi ∈ Ki (i = 1, . . . , n),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(5)

where (x1, . . . ,xn) ∈ Rk1 × · · · × Rkn is the variable, and Ai ∈ Rm×ki , b ∈ Rm, and ci ∈ Rki

(i = 1, . . . , n) are constant. The dual of Problem (5) is formulated in variables y ∈ Rm as

(DSOCP) : max b�y

s.t. ci − A�
i y ∈ Ki (i = 1, . . . , n).

}
(6)

SOCP has received increasing attention for its broad application [1, 6, 17]. The primal-dual interior-
point methods, which were developed for LP [19] at first, have been naturally extended to SOCP [20].

Let intKi denote the interior of Ki (see, e.g., [25]) defined as

intRni
+ = {p = (p1, . . . , pni) ∈ Rni |pi > 0 (i = 1, . . . , ni)},

intLni
+ = {p = (p0,p1) ∈ R1 × Rni−1|p0 > ‖p1‖2}.

We introduce the following assumptions on the primal-dual pair of SOCP problems:

Assumption 2.2.
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Figure 1: Two-degrees-of-freedom truss.

(i) The rows of the matrix Ã := (A1, . . . ,An) ∈ Rm×k are linearly independent;

(ii) Both (PSOCP) and (DSOCP) have strictly feasible solutions, i.e.,{
(x1, . . . ,xn) ∈ Rk1 × · · · ×Rkn

∣∣∣ n∑
i=1

Aixi = b, xi ∈ intKi (i = 1, . . . , n)
}
�= ∅,

{y ∈ Rm|ci − A�
i y ∈ intKi (i = 1, . . . , n)} �= ∅

are satisfied.

(PSOCP) and (DSOCP) are known to satisfy the following duality property:

Theorem 2.3 (Strong duality of SOCP). Under Assumption 2.2,

(i) (PSOCP) and (DSOCP) have the optimal solutions (x1, . . . ,xn) and y, respectively, and

n∑
i=1

c�i xi = b�y. (7)

(ii) feasible solutions (x1, . . . ,xn) and y of (PSOCP) and (DSOCP), respectively, are the optimal
solutions if and only if (7) is satisfied.

Proof. See Theorem 2.4.1 in [6].

Theorem 2.3 plays a fundamental role in a tractable formulation of robustness functions in
Section 5. For engineering use of the strong duality of SOCP, see [15, 16].

3. Illustrative example.
Consider a linear elastic two-degrees-of-freedom truss as illustrated in Fig.1. In order to introduce

the concept of robustness functions in more detail, this section illustrates how to find the robustness
functions analytically for the simple truss example.

Node (a) in Fig.1 is pin-supported, whereas the external forces f1 and f2 are applied at nodes (b)
and (c), respectively. u1 and u2 denote the displacements of nodes (b) and (c), respectively. The
member stresses σi are obtained as

σ1 =
f1 + f2

a1
, σ2 =

f2

a2
,

where ai denotes the cross-sectional area of the ith member. Consider the stress constraints written
as

|σi| ≤ σc (i = 1, 2), (8)
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where σc > 0 is a constant.
Suppose that (f1, f2) may deviate from the nominal value, where its uncertainty can be expressed

by an interval info-gap model [2] defined as

f1 = f2 = f̃ + ζ, α ≥ |ζ|, α ≥ 0. (9)

Here, f̃ > 0 denotes the nominal value of f1 and f2, and ζ the parameter representing the uncertainty.
The robustness function α̂(a, σc) is defined as the greatest value of α for which the constraints (8)
are not violated with any (f1, f2) satisfying (9). It follows from f̃ > 0 that the maximum absolute
value of stresses are obtained as

max
ζ∈R

{|σ1| : α ≥ |ζ|} =
2(f̃ + α)

a1
, max

ζ∈R
{|σ2| : α ≥ |ζ|} =

f̃ + α

a2
. (10)

Let f̃ = 1.0 and σc = 0.2. Suppose that members (1) and (2) have the same unstressed member
lengths. Consider the following two cases:

a1 = (15,15)�, a2 = (20,10)�,

which have the same structural volume. First, let a = a1. It follows from (10) that max{|σ1| :
α ≥ |ζ|} attains σc at α = 0.5. On the other hand, max{|σ2| : α ≥ |ζ|} attains σc at α = 2.0.
Consequently, we obtain

α̂(a1, σc) = 0.5.

The worst case corresponds to f1 = f2 = 1.5, where the stress constraint of member (1) becomes
active in tension state. α̂ = 0.5 implies that the member stresses are guaranteed to be acceptable
in the sense of (8), if the uncertain external forces satisfy (9) with α = 0.5. Next, letting a = a2,
we see for each i = 1, 2 that

max
ζ∈R

{|σi| : α ≥ |ζ|} = σc ⇐⇒ α = 1.0,

from which we obtain

α̂(a2, σc) = 1.0.

The worst case corresponds to f1 = f2 = 2.0, where the stress constraints of members (1) and (2)
become active in tension state. Hence, we conclude that the robustness function of the design a2 is
larger than that of a1, i.e., a2 is more robust than a1.

Unfortunately, if the mechanical system has moderately many degrees of freedom and/or the
uncertainty set has a complicated structure, it is difficult to find the worst case perturbation and the
corresponding active constraint conditions. This is the crucial difficulty in evaluating the robustness
function. In the following section, we propose a unified formulation for calculating the robustness
function. A numerically tractable reformulation scheme is also proposed in Section 5.
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4. Robustness functions associated with stress constraints.
In this section, we show that the robustness function of trusses associated with stress constraints

can be obtained as the optimal objective value of a mathematical programming problem with in-
finitely many constraint conditions.

Consider a linear elastic truss in the three-dimensional space. Let nd denote the number of
degrees of freedom of displacements. u ∈ Rnd

and f ∈ Rnd
denote the vectors of nodal displacements

and external forces, respectively. The system of equilibrium equations can be written as

Ku = f , (11)

where K ∈ Snd
denotes the stiffness matrix of the truss. In what follows, we suppose that f in (11)

has the bounded uncertainty (rigorously defined below).
Let a = (ai) ∈ Rnm

denote the vector of cross-sectional areas, where nm denotes the number of
members. Observing that the stiffness matrix of the truss satisfies

rank (∂K/∂ai) = 1 (i = 1, . . . , nm),

we can write

K(a) =
nm∑
i=1

aibib
�
i . (12)

Here, for each i = 1, . . . , nm, bi = (bij) ∈ Rnd
is a constant vector.

Consider the constraints on nodal displacements u formulated as

‖Du‖∞ ≤ uc, (13)

or, equivalently,

|d�
l u| ≤ uc

l (l = 1, . . . , nc),

where R � uc > 0, R � uc
l ≥ 0, D ∈ Rnc×nd

, and dl ∈ Rnd
are constant. Here, from the definition

(1) of l∞-norm, we immediately have

‖Du‖∞ = max
k∈{1,...,nc}

|(Du)k| ,

where (Du)k denots the kth component of the vector Du. Let E denote the elastic modulus. It
follows from (12) that the stress constraints are written in a form of∣∣∣√Eb�i u

∣∣∣ ≤ σc
i (i = 1, . . . , nm), (14)

which can be easily embedded into (13).
Throughout the paper, we restrict ourselves to the cases where only the external forces f have

uncertainty. Let f̃ ∈ Rnd
denote the nominal value of f . For the given f̃ and α ≥ 0, we denote the

uncertainty set of f by

T (α, f̃ ) ⊂ Rnd
,
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which is given as the affine image of a set Z(α) satisfying Assumption 2.1. In what follows, T (α, f̃ )
is often abbreviated by T (α) or T . Let U(α) ⊆ Rnd

denote the set of all the possible solutions to
(11), i.e.,

U(α) =
{

u ∈ Rnd |Ku = f , for some f ∈ T (α)
}

. (15)

In accordance with (4), the robustness function α̂ : Rnm+1 �→ (−∞,+∞] associated with the stress
constraints (13) is defined as

α̂(a, uc) = max {α : uc ≥ ‖Du‖∞ ∀u ∈ U(α)} . (16)

Consequently, the robustness function α̂ can be obtained by solving the optimization problem (16).
However, it should be emphasized that Problem (16) is numerically intractable, because it has
infinite number of constraints. This motivates us to investigate in Section 5 a reformulation scheme
of Problem (16).

5. Direct evaluations of robustness functions.

We investigate in this section some particular cases of uncertainty sets T , and propose a nu-
merically tractable formulation to calculate the robustness function α̂ concerning with the stress
constraints.

Throughout this section, suppose

uc ≥ ‖Du‖∞ ∀u ∈ U(0), (17)

otherwise we obtain α̂(a, uc) = 0 from the definition. We write K := K(a) for simplicity.
We first investigate a relatively general setting of the uncertainty set. Let ζp = (ζpq)

np

q=1, ζ =
(ζ1, . . . , ζm) ∈ Rnζ

and nζ =
∑m

p=1 np. Assume that T is given as the affine image of a bounded
set Z(α) = {ζ} ⊂ Rnζ

; i.e.,

T (α, f̃ ) =
{

f̃ +
m∑

p=1

np∑
q=1

ζpqf
pq

∣∣∣ζ ∈ Z(α)
}

, (18)

where fpq ∈ Rnd
is constant for each q = 1, . . . , np (p = 1, . . . ,m). Suppose

Z(α) = {ζ ∈ Rnζ |α ≥ ‖ζp‖2 (p = 1, . . . ,m)}. (19)

Notice here that the definition (19) of Z(α) is motivated by the assumption such that the uncertainty
parameters ζp1, . . . , ζpnp perturb uncorrelatedly under the norm constraint, whereas ζp1q1 and ζp2q2

are independent if p1 �= p2.
The following proposition states our main result:

Proposition 5.1. Suppose that T and Z are given by (18) and (19), respectively. Then the robust-
ness function α̂ is explicitly obtained as

α̂(a, uc) = min
l=1,...,nc

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d�

l K−1f̃ + uc

m∑
p=1

∥∥∥∥(
d�

l K−1fpq
)np

q=1

∥∥∥∥
2

,
−d�

l K−1f̃ + uc

m∑
p=1

∥∥∥∥(
d�

l K−1fpq
)np

q=1

∥∥∥∥
2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (20)
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Proof. A point (α,u) ∈ R × Rnd
is a feasible solution of Problem (16) if and only if (α,u) solves

the following semi-infinite system:

− ‖Du‖∞ + uc ≥ 0

∀u ∈

⎧⎨⎩u ∈ Rnd

∣∣∣∣∣∣Ku −
(
f̃ +

m∑
p=1

np∑
q=1

ζpqf
pq

)
= 0, ζ ∈ Z(α)

⎫⎬⎭ .
(21)

In what follows, we may assume α > 0 without loss of generality, because the assumption (17) and
Assumption 2.1 imply α̂ > 0. Observe that (α,u) solves (21) if and only if

min
�

{
−

∥∥∥DK−1
(
f̃ +

m∑
p=1

np∑
q=1

ζpqf
pq

)∥∥∥
∞

+ uc : ζ ∈ Z(α)
}
≥ 0 (22)

is satisfied. By using the definition (19) of Z, the left-hand side of inequality (22) is equivalent to
the following series of 2nc SOCP problems in variables ζ ∈ Rnζ

:

P+
l (α,u) : min d�

l K−1
(
f̃ +

m∑
p=1

np∑
q=1

ζpqf
pq

)
+ uc

s.t. α ≥ ‖ζp‖ (p = 1, . . . ,m);

⎫⎪⎪⎬⎪⎪⎭ (23)

P−
l (α,u) : min −d�

l K−1
(
f̃ +

m∑
p=1

np∑
q=1

ζpqf
pq

)
+ uc

s.t. α ≥ ‖ζp‖ (p = 1, . . . ,m).

⎫⎪⎪⎬⎪⎪⎭ (24)

For each l = 1, . . . , nc, the dual problem of Problem (23) is formulated in variables (w+
l ,µ+

l ) ∈
Rnc × Rm with w+

lp = (w+
lpq)

np

q=1, w+
l = (w+

lp)
m
p=1, and µ+

l = (µ+
lp)

m
p=1 as

D+
l (α,u) : max θ+

Dl
:= d�

l K−1f̃ + uc − α
m∑

p=1

µ+
lp

s.t. d�
l K−1fpq − w+

lpq = 0 (q = 1, . . . , np; p = 1, . . . ,m),
µ+

lp ≥ ‖(w+
lpq)

np

q=1‖ (p = 1, . . . ,m).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (25)

Notice here that α > 0 guarantees the strict feasibility of P+
l (α,u), i.e., there exists a ζ satisfying

α > ‖ζp‖ (p = 1, . . . ,m). It is clear that D+
l (α,u) has a strictly feasible solution, because µ+

lp is not
bounded from above. Hence, by applying the conic duality theorem (Theorem 2.3) to the pair of
P+

l (α,u) and D+
l (α,u), we see that the optimal objective value of P+

l (α,u) coincides with that of
D+

l (α,u).
Similarly, for each l = 1, . . . , nc, the dual problem of Problem (24) is formulated in variables

(w−
l ,µ−

l ) ∈ Rnc × Rm as

D−
l (α,u) : max θ−Dl

:= −d�
l K−1f̃ + uc − α

m∑
p=1

µ−
lp

s.t. d�
l K−1fpq − w−

lpq = 0 (q = 1, . . . , np; p = 1, . . . ,m),
µ−

lp ≥ ‖(w−
lpq)

np

q=1‖ (p = 1, . . . ,m).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(26)

Since both P−
l (α,u) and D−

l (α,u) are strictly feasible, Theorem 2.3 implies that the optimal ob-
jective value of P−

l (α,u) coincides with that of D−
l (α,u).
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Consequently, (22) is equivalent to the fact that there exist feasible solutions (w+
l ,µ+

l ) and
(w−

l ,µ−
l ) of Problems (25) and (26), respectively, satisfying θ+

Dl
≥ 0 and θ−Dl

≥ 0, which is reduced
to

d�
l K−1f̃ + uc ≥ α

m∑
p=1

∥∥∥∥(
d�

l K−1fpq
)np

q=1

∥∥∥∥ (l = 1, . . . , nc), (27)

− d�
l K−1f̃ + uc ≥ α

m∑
p=1

∥∥∥∥(
d�

l K−1fpq
)np

q=1

∥∥∥∥ (l = 1, . . . , nc). (28)

It follows from (27) and (28) that Problem (16) is reduced to

max α

s.t. α ≤ d�
l K−1f̃ + uc

m∑
p=1

∥∥∥∥(
d�

l K−1fpq
)np

q=1

∥∥∥∥
, α ≤ −d�

l K−1f̃ + uc

m∑
p=1

∥∥∥∥(
d�

l K−1fpq
)np

q=1

∥∥∥∥
(l = 1, . . . , nc),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (29)

which is equivalent to Problem (20).

The proof of Proposition 5.1 is motivated by an extension of the idea found in that of Theorem 1
in [7].

It should be emphasized that the formulation (20) does not include any variable, which implies
that Proposition 5.1 gives a tractable formulation for computing the robustness function α̂. Indeed,
(20) implies that α̂ is obtained by comparing 2nc terms computed from the data. It is obvious that
each term can be computed within the number of arithmetic operations bounded by a polynomial
of nd and nζ . Consequently, Proposition 5.1 has the advantage such that the number of arithmetic
operations required is bounded by a polynomial of the dimensions of the mechanical system and the
uncertainty parameters, on the contrary to the fact that the formulation (16) has infinitely many
constraint conditions.

Recall that we started the discussion in Section 4 by assuming that the constraints on the
mechanical performances are written as (13). Therefore, we easily see that Proposition 5.1 can
be applied not only to the stress constraints but also to any constraints expressed as the linear
inequalities of displacements.

We next consider a simpler case than the case of (18) and (19), where all uncertainty parameters
are running through the uncertainty set uncorrelatedly under the l2-norm constraint. Suppose that
T and Z are given as

T (α, f̃ ) =
{

f̃ +
nζ∑
q=1

ζqf
q
∣∣∣ζ ∈ Z(α)

}
, (30)

Z(α) = {ζ ∈ Rnζ |α ≥ ‖ζ‖2}. (31)

In this case, the robustness function α̂ can be obtained by putting m = 1 in Proposition 5.1, i.e.,

α̂(a, uc) = min
l=1,...,nc

⎧⎪⎪⎨⎪⎪⎩min

⎧⎪⎪⎨⎪⎪⎩
d�

l K−1f̃ + uc∥∥∥∥(
d�

l K−1f1q
)n1

q=1

∥∥∥∥
2

,
−d�

l K−1f̃ + uc∥∥∥∥(
d�

l K−1f1q
)n1

q=1

∥∥∥∥
2

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ . (32)
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Recall that the l∞-norm and l1-norm of p ∈ Rn are defined by (1) and (2), respectively. The result
for the l∞-norm constrained uncertainty is summarized as the following proposition:

Proposition 5.2. Assume that T and Z are given as

T (α, f̃ ) =
{
f̃ +

nζ∑
p=1

ζpf
p
∣∣∣ζ ∈ Z(α)

}
, (33)

Z(α) = {ζ ∈ Rnζ |α ≥ ‖ζ‖∞}. (34)

Then the robustness function α̂ is explicitly obtained as

α̂(a, uc) = min
l=1,...,nc

⎧⎪⎪⎪⎨⎪⎪⎪⎩min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d�

l K−1f̃ + uc∥∥∥∥(
d�

l K−1fp
)nζ

p=1

∥∥∥∥
1

,
−d�

l K−1f̃ + uc∥∥∥∥(
d�

l K−1fp
)nζ

p=1

∥∥∥∥
1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (35)

Proof. Proposition 5.2 is obtained as a particular case of Proposition 5.1 by putting np = 1 (p =
1, . . . ,m).

It is clear that the definition (34) of Z(α) implies that ζ1, . . . , ζnζ perturb independently from
each other. The box-constrained uncertainty, which is often used in the interval analysis [10], is
included in Proposition 5.2 as a special case of

fp
j =

⎧⎨⎩1 (j = p)

0 (otherwise)
(p = 1, . . . , nζ).

6. Numerical experiments.

The robustness functions are computed for various trusses by using the methods proposed in
Section 5. Computation has been carried out on Pentium M (1.5GHz with 1GB memory) with
MATLAB Version 6.5.1 [21].

6.1. 2-bar truss.

Consider a two-bar truss illustrated in Fig.2. The nodal coordinates at the initial unstressed state
of nodes (a), (b), and (c) are specified as (x, y) = (1, 1), (0, 1), and (0, 0), respectively. Nodes (b)
and (c) are pin-supported; i.e., nd = 2 and nm = 2. The cross-sectional areas a and the nominal
external forces f̃ are given by

a = (20,40)�, f̃ = (10,0)�.

Consider the stress constraints of all members defined by (14), where

E = 10.0, σc
i = 1.0 (i = 1, 2).

However, the robustness function does not depend on E, because only the stress constraints are
considered.

Suppose that the uncertain set T is defined by (18) and (19) in Proposition 5.1, where n1 = 2
and m = 1 with

f11 = (1/
√

2, 1/
√

2), f12 = (1/
√

2,−1/
√

2). (36)
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(a)

x

y

(b)

(c)0

f∼(1)

(2)

Figure 2: 2-bar truss.

The corresponding admissible set of the external force vector f is as illustrated in Fig.3, i.e., the
vector f = f̃ +

∑2
q=1 ζ1qf

1q should exist in the interior or on the boundary of the circle centered
at f̃ with the radius of α. By computing (20), we obtain α̂(a, σc) = 7.0711. In order to verify
this result, we randomly generate a number of ζ ∈ Z(α̂), and compute the corresponding member
stresses σi. The points obtained on the σ1σ2-plane are shown in Fig.5. It is observed from Fig.5
that the stress constraints (14) are satisfied with all possible ζ. The worst case of this example
corresponds to ζ = (5.0,−5.0)�, where the constraint σ1 ≤ σc

1 becomes active.
We next take

f11 = (1/
√

2, 1/
√

2), f12 = (0.5,−0.5), (37)

then we obtain α̂(ã, σc) = 10.0 by computing (20). The worst case of this example corresponds to
ζ = (0, 10)�, where the constraint σ1 ≤ σc

1 becomes active.
Consider the l∞-norm constrained uncertain set T defined by (33) and (34) in Proposition 5.2

with (37) and nζ = 2. The corresponding admissible set of f is as illustrated in Fig.4. Then, by
using (35), the robustness function is directly obtained as α̂(a, σc) = 12.4264. Fig.6 shows (σ1, σ2)
corresponding to the randomly generated ζ ∈ Z(α̂(a, σc)). In this example, it is observed from
Fig.6 that the constraints σ2 ≤ σc

2 and σ2 ≥ −σc
2 possibly become active in the worst cases. The

corresponding uncertain parameters are ζ = (12.4264,−12.4264)� and ζ = (−12.4264,12.4264)� ,
respectively. It is interesting to see that, not only the values of robustness function, but also the
critical constraints at the worst cases depend on the definition of uncertainty sets.

6.2. 29-bar truss.
Consider a truss illustrated in Fig.7. Nodes (a) and (b) are pin-supported at (x, y) = (0, 100)

and (0, 0), respectively, where nd = 20 and nm = 29. The lengths of members both in x- and
y-directions are 50.0. Two loads (0,−1) are applied at nodes (c) and (d) as the nominal external
loads f̃ . Consider the stress constraints of all members defined by (14), where

E = 100.0, σc
i = 5.0 (i = 1, 2).
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f0
1

f2

α

−α

10+α
10−α

f

f
∼

Figure 3: Admissible set of f defined by (18), (19), and (36).

f0
1

f2

10+β

β

−β

10−β

10+γ

10−γ

γ

−γ
f

f∼

Figure 4: Admissible set of f defined by (33), (34), and (37), where β = α(
√

2 + 1)/2 and γ =
α(

√
2 − 1)/2.

Suppose that the uncertain set T is defined by (18) and (19) in Proposition 5.1, where n1 = nd

and m = 1. Let

f1q
j =

⎧⎨⎩1 (j = q)

0 (otherwise)
(q = 1, . . . , nd), (38)

a1
i = 40.0 (i = 1, . . . , nm). (39)

Hence, there may exist uncertain external loads at all the unconstrained nodes. By computing (20),
we obtain α̂(a1, σc) = 0.78477. As an alternative set of cross-sectional areas, consider

a2
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
15 (i = 9, 15, 18, 27),

65 (i = 1, 2, 24, 26),

40 (otherwise).

(40)
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Figure 5: Stress states of the 2-bar truss for randomly generated ζ satisfying (18), (19), and (36)
with α = α̂.
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Figure 6: Stress states of the 2-bar truss for randomly generated ζ satisfying (33), (34), and (37)
with α = α̂.
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(2)
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0

(8)
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(c) (d)
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(18) (19) (20)
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Figure 7: 29-bar truss.

As a solution of (20), we obtain α̂(a2, σc) = 1.6778. Hence, the robustness function of a2 is more
than twice larger than that of a1, despite the fact that a1 and a2 have the same structural volume.

In order to verify this result, we randomly generate a number of ζ ∈ Z(α̂), and compute the
corresponding member stresses σi. Fig.8 and Fig.9 show the obtained σi from the randomly gener-
ated ζ ∈ Z(α) with α = α̂(a1, σc) and α = α̂(a2, σc), respectively. It is observed from Fig.8 and
Fig.9 that the stress constraints (14) are satisfied with any possible ζ. Recall that our formulations
in Section 5 provide the exact value of α̂ in the sense that there exists a worst-case uncertainty pa-
rameter ζ ∈ Z(α̂) at which some stress constraints become active. However, the results in Fig.8 and
Fig.9 seem to be conservative. This is because the actual worst-case behavior cannot be accurately
predicted, in general, by taking a rather small number of random samples.

For a = a1, it is conjectured from Fig.8 that the worst case of this example corresponding
to ζ such that σ9 ≤ σc

9 and/or σ15 ≥ −σc
15 become active. Hence, it is natural to expect that

the robustness function increases if we increase a9 and a15, which has been confirmed by showing
α̂(a1, σc) < α̂(a2, σc).

7. Conclusions.
In this paper, we have proposed a direct method for calculating the robustness function associ-

ated with stress constraints, which may permit us to apply the info-gap decision theory [2] to the
structural reliability design.

We have shown that the robustness function under uncertain external forces can be obtained
as the optimal objective value of an optimization problem with finite number of variables and
infinitely many constraint conditions. Particularly, we have investigated the uncertainty sets which
are expressed via some Euclidean norms of a vector of uncertainty parameters. By using the strong
duality theory of the second-order cone programming problem, we have reformulated the present
problem to a numerically tractable form without any variable.
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Figure 8: Stress states of the 29-bar truss with a = a1 for randomly generated ζ with α = 0.78477.

Figure 9: Stress states of the 29-bar truss with a = a2 for randomly generated ζ with α = 1.6778.

The number of arithmetic operations required to compute the robustness function in the proposed
formulation is bounded by a polynomial of the dimensions of mechanical system and uncertainty
parameters. This indicates its excellent performance even in large scale problems. It is straight-
forward to show that the present formulation for stress constraints can be extended to the cases
including linear inequality constraints of the displacements.

The robustness functions of trusses have been obtained under various conditions of uncertainties
in the numerical examples. It has been shown that the robustness function depends on the member
cross-sectional areas as well as the definition of the uncertainty sets. We have also illustrated that
the robustness function can be increased by stiffening the members on which the stress constraints
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become active in the worst case. This intuitive scheme of structural design may suggest a novel and
promising concept of the robust structural optimization based on the robustness function, which
remains as our future work.
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