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1 Introduction

In many engineering applications, structural elements can be modeled not to transmit the tension
forces. The so-called masonry structures [6] are typical examples, which may include ancient
architectural heritage, brickwork walls, and concrete structures consisting of mortar, stones and/or
bricks, etc. Among many models proposed for analyses of masonry structures [5, 10, 21], the
assumption of no-tension material has been still widely used, and has received great attention [1,
6–8, 11, 20, 24]. In this paper, we restrict ourselves to the case in which no-tension material
behaves as an elastic body which cannot transmit tension stresses, but otherwise behave as the
linear elastic material. The stress–strain relation of this material is assumed to be reversible,
i.e., there exists no energy dissipation. The microscopic model of no-tension material is that of a
set of particles reacting elastically only through contact. In this paper, we assume that masonry
structures consist only of no-tension material, and possibly have smeared cracks.

In quasi-static analyses of masonry structures, the constitutive law depends on the stress
states, i.e., on the existence and directions of cracks. This is considered as the major difficulty
of conventional methods, because trial-and-error processes are usually required in order to find
the crack conditions which does not conflict with the incremental displacements. Therefore, it
is desirable to develop a method based on a formulation irrespective of stress states. Under the
assumption of plane-stress state and material isotropy, Giaquinta and Giusti [11] investigated the
constitutive law of no-tension material. Maier and Nappi [20] formulated the same law as a linear
complementarity condition by using a piecewise linear approximation of admissible stress set. A
constitutive law of no-tension material under the thermal loads was presented by Padovani et al.
[24]. Cuomo and Ventura [7] proposed a complementary energy formulation of no-tension material.
Alfano et al. [1] performed numerical analyses of masonry structures based on a tangent-secant
approach with the line search.

As the concept opposite to no-tension material, we may define no-compression material, which
cannot transmit compression forces, but otherwise behave as the linear elastic material. We
assume that a membrane is modeled as a two-dimensional structure which consists only of no-
compression material, and may have smeared wrinkles. Lu et al. [19] proposed a numerical method
for wrinkling membranes under the assumption of no-compression material. Pipkin [25] and Atai
and Steigmann [3] formulated the strain energy function for membrane as a quasi-convexification
of that for plate. The cables are regarded as the one-dimensional no-compression material. The
authors proposed a second-order cone programming approach to find equilibrium configurations
of cable networks [15]．

In this paper, based on the convex optimization, we investigate the minimization problem of
total potential energy for no-tension or no-compression structures, where

(i) we assume small strains and small rotations;

(ii) the structures consist only of no-tension or no-compression isotropic material;
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(iii) smeared crack strain is assumed to be reversible and non-dissipative, hence our problems
are path-independent [20].

In order to find equilibrium configurations of these structures, we propose novel formulations
which are independent of the stress states, e.g., the existence and directions of cracks or wrinkles.
It should be also noted that the formulation and implementation of the proposed methodology
are quite independent of the fact that the problem is two- or three-dimensional.

Our approach in this paper is summarized as follows. We first formulate the minimization
problem of total potential energy for no-tension continua as the (infinite-dimensional) optimization
problem. Then we reformulate this problem into the semidefinite programming (SDP) problem [29]
in the infinite-dimensional space. By applying the displacement-based finite-element discretization
procedure, we show that the discretized version of the proposed problem is an SDP problem with
the finite number of variables. An equilibrium configuration is obtained as an optimal solution of
the proposed SDP problem by using the primal-dual interior-point method [18].

It is known that SDP can be solved efficiently by using the primal-dual interior-point method,
where the number of arithmetic operations required is bounded by a polynomial of the size of prob-
lem [4, 18, 29]. Hence, by our method, equilibrium configurations of no-tension or no-compression
structures are guaranteed to be obtained within the polynomial time of number of finite elements
and number of degrees of freedom of the structure. The authors proposed efficient algorithms
based on SDP for structural optimization with specified fundamental frequency [23] and linear
buckling constraints [16].

This paper is organized as follows. In Section 2, we introduce SDP and its optimality condi-
tions. In Section 3, we formulate the minimization problem of total potential energy for masonry
structures or membranes. We show in Section 4 that the minimization problem of total potential
energy can be reformulated into the (infinite-dimensional version of) SDP problem. Section 5 is
devoted to the finite element discretization of the presented SDP problem. The resulting problem
is also shown to be embedded into the (finite-dimensional) SDP problem. In Section 6, SDP
problems are solved by using the primal-dual interior-point method in order to obtain equilibrium
configurations of masonry structures and membranes.

2 Preliminary results

Throughout the paper, all vectors are assumed to be column vectors. However, for vectors p ∈ Rn

and q ∈ Rm, we often write

(p,q) = (p�,q�)� ∈ Rn+m

in order to simplify the notation. The Cartesian product of two sets U ⊆ Rn and V ⊆ Rm is
defined as

U × V = {(x�,y�)�|x ∈ U , y ∈ V}.
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2.1 Matrices and Tensors

We write p ≥ 0 if a vector p = (pi) ∈ Rn satisfies pi ≥ 0 (i = 1, . . . , n). Let Sn ⊂ Rn×n denote
the set of all n × n real symmetric matrices. For P ∈ Sn and Q ∈ Sn, we write P � O and
P � Q if P and P − Q are positive semidefinite, respectively.

In this paper, we often regard the vector p ∈ Rn as the n-dimensional first-order tensor. The
matrix Q ∈ Sn is also regarded as the n-dimensional second-order symmetric tensor. For Q ∈ Sn,
its eigenvalues, or its principal values, are denoted by qi (i = 1, . . . , n). We denote the inner
products of p, q ∈ Rn and P , Q ∈ Rn×n, respectively, by

p�q =
n∑

i=1

piqi,

P • Q =
n∑

i=1

n∑
j=1

PijQij = tr(P�Q).

However, in accordance with the conventional notations for tensors, we also write

p · q = p�q,

P : Q = P • Q.

For a ∈ Rn and b ∈ Rn, the tensor product a ⊗ b denotes an n-dimensional second-order tensor
satisfying

(a ⊗ b) · c = (b · c)a, ∀c ∈ Rn.

Let ei ∈ Rn (i = 1, . . . , n) denote the base vectors of reference frame (x1, . . . , xn) in the n-
dimensional space. Suppose that the vector field b(x) ∈ Rn is defined for the position vector
x ∈ Rn. Then the gradient of b is written as

b ⊗∇ =
∂bi

∂xj
ei ⊗ ej.

For given Ai ∈ Sn (i = 1, . . . ,m), define the action of linear mapping A : Rm 	→ Sn on
y ∈ Rm as [4]

A · y =
m∑

i=1

Aiyi. (1)

The adjoint operator A∗ : Sn 	→ Rm to A is defined as the linear operator satisfying (A∗ : X) ·y =
X : (A · y) for any X ∈ Sn and y ∈ Rm. From (1), we obtain

A∗ : X = (A1 : X, . . . ,Am : X)� . (2)
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The evec operator is defined as stacking the columns of the lower triangle of P = (Pij) ∈ Sn

on top of each other and multiplying the off-diagonal elements by 2, i.e.,

evec(P ) = (P11, 2P21, . . . , 2Pn1, P22, 2P32, . . . , Pnn)� ∈ Rn(n+1)/2. (3)

We denote the inverse map of evec by Mat, i.e., the implication

π = evec(P ) ⇐⇒ P = Mat(π)

holds for any P ∈ Sn and π ∈ Rn(n+1)/2. It should be emphasized that the action of Mat on
π ∈ Rn(n+1)/2 can be expressed in a form of

Mat(π) =
n(n+1)/2∑

i=1

I iπi

by using the appropriate constant matrices Ii ∈ Sn. Consequently, with Az : Rk 	→ Sn and a
constant matrix D ∈ Sn, the condition in the form of

Mat(π) + Az · z + D � O (4)

is regarded as the linear matrix inequality [4] in terms of (π,z) ∈ Rn(n+1)/2 × Rk.
The operator which transforms a symmetric matrix P ∈ Sn into an n(n + 1)/2-dimensional

vector was used by Helmberg [12], Todd et al. [28]. They used the notation svec, and its definition
is slightly different from evec introduced in (3). Indeed, by applying svec, the off-diagonal
elements of P ∈ Sn are multiplied by

√
2 instead of 2. However, we use evec in this paper,

because evec(E) for a symmetric linear strain tensor E coincides with so-called strain vector
with reordering its elements.

2.2 Semidefinite Program

The semidefinite programming (SDP) problem refers to the optimization problem having the form
of [29]

min C : X

s.t. A∗ : X = b, Sn � X � O,

}
(5)

where X is variable, A is the linear operator defined by (1) for constant Ai ∈ Sn (i = 1, . . . ,m),
and b ∈ Rm and C ∈ Sn are constants. The dual of Problem (5) is formulated in variable y ∈ Rm

as

max b · y
s.t. C −A · y � O.

}
(6)
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Observe that the dual SDP problem (6) is the minimization problem of linear function over the
linear matrix inequality in terms of y. Hence, the constraint in a form of (4) can be embedded
into the constraint of SDP problem (6) by putting y = (π,z).

Recently, SDP has received increasing attention for its wide fields of application [4, 23, 29]. It
is well-known that linear program (LP), second-order cone program (SOCP), etc., are included
by SDP as the special cases [4]. It is theoretically guaranteed that the primal-dual interior-point
method [18] converges to the optimal solutions of the pair of SDP problems (5) and (6) within
the number of arithmetic operations bounded by a polynomial of n and m [4, 18].

2.3 Optimality conditions of nonlinear SDP

Let f : Sn 	→ R and G : Sn 	→ Sn be continuously differentiable functions. Consider the following
optimization problem called the nonlinear SDP problem in variable Z ∈ Sn:

min f(Z)
s.t. G(Z) � O.

}
(7)

See, e.g., Kanzow et al. [17] and Jarre [13] for the optimality conditions of nonlinear SDP problems
and optimization algorithms. However, the form of Problem (7) is slightly different from the
problems dealt with in [13, 17].

Let Df(Z′) and DG(Z ′) denote the derivatives of the mapping f(·) and G(·), respectively, at
Z′ = (Z ′

ij) ∈ Sn defined such that Df(Z′)•H and DG(Z ′)•H are linear functions of H ∈ Rn×n

given by

Df(Z′) • H =
n∑

i=1

n∑
j=1

Hij
∂f(Z)
∂Zij

∣∣∣∣
�=�′

,

DG(Z ′) • H =
n∑

i=1

n∑
j=1

Hij
∂G(Z)
∂Zij

∣∣∣∣
�=�′

.

Let W ∈ Sn be a Lagrange multiplier. The Lagrangian L : Sn ×Sn 	→ [−∞,+∞] of Problem (7)
is formulated as

L(Z,W ) =

⎧⎨⎩f(Z) − W • G(Z) (W � O),

+∞ (otherwise).
(8)

Indeed, by using the self-duality of the cone {W ∈ Sn|W � O} [4], we see that Problem (7) is
equivalent to

min
�∈Sn

sup{L(Z,W )|W ∈ Sn},

which validates that L can be regarded as the Lagrangian of Problem (7) (see, e.g., [26, Theo-
rem 36.5]). Then the optimality conditions are immediately obtained as follows:
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Proposition 2.1. Suppose that f and G are convex. Z is an optimal solution of the nonlinear
SDP problem (7) if and only if there exists a W ∈ Sn satisfying the Karush-Kuhn-Tucker (KKT)
conditions

Df(Z) − W • DG(Z) = O, (9)

G(Z) � O, W � O, G(Z) • W = 0. (10)

Proof. Apply Theorem 36.6 in [26] to L defined by (8).

As is well known, for G � O and W � O, the condition G • W = 0 is equivalent to [2]

GW = O. (11)

Moreover, the complementarity condition (11) is equivalent to the complementarity condition in
terms of eigenvalues of G and W as follows:

Proposition 2.2. G ∈ Sn and W ∈ Sn satisfy

G � O, W � O, GW = O

if and only if there exists a Q ∈ Rn×n, with Q�Q = I, such that

G = Q� Diag(g1, . . . , gn)Q,

W = Q� Diag(w1, . . . , wn)Q,

gi ≥ 0, wi ≥ 0, giwi = 0 (i = 1, . . . , n).

Proof. See Alizadeh et al. [2, Lemma 3].

We see that gi and wi introduced in Proposition 2.2 correspond to eigenvalues, or principal
values in terminology of tensor analysis, of G and W , respectively. The columns of Q coincide
with the corresponding eigenvectors, or principal directions, of G and W . Hence, Proposition 2.2
implies that G(Z) and W commute at the optimal solutions of the nonlinear SDP problem (7),
i.e., they share a common system of eigenvectors. Moreover, the eigenvalues of G(Z) and W

satisfy the complementarity conditions.

3 Minimization problem of total potential energy

Let µ ∈ {2, 3}. Consider a µ-dimensional elastic body, which consists of isotropic material, and
occupies a bounded and connected domain Ω ⊂ Rµ with a sufficiently smooth boundary ∂Ω. The
displacements vector field of the body is denoted by a mapping u : Ω 	→ Rµ, which is also assumed
to be smooth enough. The linear strain tensor E is defined by

E =
1
2

[
(u ⊗∇) + (u ⊗∇)�

]
,
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Figure 1: Constitutive law of no-tension material (s−2 = s−3 = 0).

which is a µ-dimensional symmetric second-order tensor. For simplicity, we often write

E · u =
1
2

[
(u ⊗∇) + (u ⊗∇)�

]
, (12)

where E : Rµ 	→ Sµ can be regarded as the linear mapping introduced in (1).
Throughout this paper, by no-tension material we mean an elastic body which cannot transmit

tension stresses, but otherwise behave as the linear elastic material. Hence, in general, the strain E

is divided to the elastic components and the inelastic components referred to as cracks. We further
assume that the inelastic strain components are reversible and non-dissipative, and that the stress
components are path-independent. The no-tension material is widely used as a model of historical
masonry structures, concrete structures, etc. [1, 11, 20]. In this paper, a structure consisting only
of no-tension material is referred to as a masonry structure. Similarly, by no-compression material
we mean an elastic body which cannot transmit compression stresses, but otherwise behave as
the linear elastic material [9, 19]. The inelastic strain components are interpreted as wrinkling.
Membrane in this paper means a two-dimensional structure which consists only of no-compression
material. Sponge may be regarded as an example of three-dimensional structure consisting only
of no-compression material.

Consider the linear material obeying Hooke’s law such that the stress tensor Q ∈ Sµ for the
strain E ∈ Sµ is given as

Q = C : E, (13)

where C denotes the constant forth-order elastic tensor. We assume that C is positive definite in
the sense that E : C : E > 0 for any Sµ � E �= O. Then the strain energy function w̃ : Sµ 	→ R

of Hooke’s material is obtained as

w̃(E) =
1
2
E : C : E. (14)

Let S− ∈ Sµ denote the stress of no-tension material compatible to E. It follows from the
assumption of isotropy of material that E and S− always commute, i.e., they always share a
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Table 1: Definitions of strains and stresses.

no-tension Hooke (i) Hooke (ii)

strain E E Z

stress S− Q S−

constitutive law (15)–(17) Q = C : E S− = C : Z

common system of eigenvectors. ei and s−i (i = 1, . . . , µ), respectively, denote the principal
strains and stresses. We introduce an auxiliary variable Z ∈ Sµ such that (E − Z) corresponds
to the inelastic strain components due to crack opening. The principal values of Z are denoted
by zi (i = 1, . . . , µ). The constitutive law of no-tension material is given as

S− = C : Z, (15)

E and (E − Z) commute,

⎧⎨⎩ei − zi = 0, if s−i < 0

s−i = 0, if ei − zi > 0
(16)

s−i ≤ 0, ei − zi ≥ 0 (i = 1, . . . , µ). (17)

We give some remarks regarding the constitutive law (15)–(17). Recall that the no-tension material
cannot transmit tension stresses. Hence, the principal stresses should be nonpositive anywhere,
which is expressed as the first condition in (17). Fig.1 illustrates the relation between the principal
stress s−1 and the principal strain e1 of no-tension material, in the case of s−2 = s−3 = 0. The second
condition in (17) requires that the inelastic principal strains (ei − zi) should be nonnegative, since
they correspond to the amounts of opening crack. From the isotropy of material, we see that cracks
should possibly open in the principal directions of strain, i.e., (E − Z) and E share a common
system of eigenvectors. If infinitesimal tension stresses are applied, then the material immediately
losses the stiffness in the corresponding principal directions as a consequence of smeared crack
opening. On the other hand, if the principal stress s−i is negative, then no crack opens in the
corresponding principal direction. These three conditions are guaranteed by (16). If there exists
no crack, then the no-tension material obeys Hooke’s law, which is represented by (15).

Let S− = (S−
ij ) and E = (Eij). w− : Sµ 	→ R denotes the strain energy function of no-tension

material defined by

S−
ij =

∂w−

∂Eij
, w−(O) = 0, (18)

or, equivalently,

w−(E) =
∫

S− : dE, w−(O) = 0. (19)
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Notice again that E denotes the actual strain which is compatible to the displacement field u. Q

defined by (13) is regarded as the ‘fictitious’ stress compatible to E, which is observed if the elastic
body obeys Hooke’s law without any crack. Alternatively, we also have the ‘fictitious’ strain Z of
Hooke’s material, which is compatible to S− in the sense of (15). (E,S−) corresponds to the pair
of strain and stress which is actually observed in the no-tension material. Table 1 summarizes the
relation among E, Z, S−, and Q. It should be emphasized that the sufficient condition (16) for
absence of crack does not depend on Q defined by (13) but S− defined by (15). For example, let
µ = 2, and let q1 and q2 denote the principal values of Q. Suppose that q1 > 0, q2 < 0, e1 > 0,
and e2 > 0, where Poisson’s ratio is sufficiently large, and |q2| is sufficiently small compared with
|q1|. It follows from e1 > 0 and e2 > 0 that S− = O, and hence Z = O is obtained from (15),
i.e., crack open both in the two principal directions. Consequently, this example illustrates that
q2 < 0 does not necessarily imply z2 − e2 = 0.

We assume small deformation as well as small strain. Let t denote the traction at boundary
∂Ω per unit length or area, depending on µ = 2 or 3. Suppose that the boundary conditions
u = u and t = t are given on Γu ⊂ ∂Ω and Γt = {∂Ω \ Γu}, respectively. By using (12) and
(18), the minimization problem of total potential energy for masonry structures is formulated in
variables E and u as

(Π−) : min
∫

Ω

(
w−(E) − f · u)

dΩ −
∫

Γt

t · udΓ

s.t. E = E · u (in Ω),
u − u = 0 (on Γu).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (20)

Remark 3.1. Recall that, for the no-compression material, we assume that the principal stresses
are nonnegative, i.e., the stress S+ should be positive semidefinite. Hence, compared with the
case of no-tension material given by (15)–(17), the constitutive law of no-compression material is
given as

S+ = C : Z, (21)

E and (Z − E) commute,

⎧⎨⎩zi − ei = 0, if s+
i > 0

s+
i = 0, if zi − ei > 0

(22)

s+ ≥ 0, zi − ei ≥ 0 (i = 1, . . . , µ). (23)

Here, (Z − E) describes the amount of wrinkle. By using (21)–(23), the strain energy w+ is
defined in a similar manner to (18). Consequently, the minimization problem of total potential
energy for membranes can be obtained by replacing w− in Problem (20) with w+.

Throughout this paper, ( )− and ( )+ denote the quantities or functions for no-tension and
no-compression materials, respectively.
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4 Infinite-dimensional SDP formulation

The constitutive law introduced in Section 3 guarantees that the stress of no-tension material
is path-independent, and masonry structures have no energy dissipation. Hence, the principle
of minimum total potential energy can be applied to a masonry structure, and an equilibrium
configuration is obtained as a solution of Problem (20). From (15)–(18), however, we see that the
objective function of Problem (20) depends on both the principal values and principal directions of
E. Hence, it is not recommended to solve Problem (20) directly. This motivates us to reformulate
Problem (20) as the (infinite-dimensional version of) SDP problem.

The following lemma shows that the constitutive law of no-tension material is expressed by
using the complementarity condition in terms of positive semidefinite matrices:

Lemma 4.1. E, S−, and Z satisfy the constitutive law (15)–(17) of no-tension material if and
only if they satisfy (15) and

E − Z � O, −S− � O, S− : (E − Z) = 0. (24)

Proof. It suffices to show under (15) that the condition (24) is equivalent to (16) and (17). Let λi

(i = 1, . . . , µ) denote the principal values of the tensor (E − Z). It follows from Proposition 2.2
that (24) holds if and only if S− and (E − Z) satisfy

S− and (E − Z) commute, (25)

λi ≥ 0, −s−i ≥ 0, s−i λi = 0 (i = 1, . . . , µ). (26)

The assumption of isotropy of no-tension material and (15) imply that S− and Z commute.
Hence, (25) implies S− and E also commute, i.e., S−, E and Z commute, from which it follows
that (25) and (26) hold if and only if (25) and

ei − zi ≥ 0, −s−i ≥ 0, s−i (ei − zi) = 0 (i = 1, . . . , µ) (27)

are satisfied. Consequently, (24) is equivalent to (25) and (27). Then we can easily see that (16)
and (17) are equivalent to (25) and (27).

The system of (15) and (24) is often referred to as the semidefinite linear complementarity
problem (SDLCP) [18], and Lemma 4.1 implies that the constitutive law of no-tension material
can be expressed as the SDLCP. Recently, one of the authors formulated the three-dimensional
frictional contact problem as the second-order cone linear complementarity problem [14], which is
a particular case of the SDLCP. From the mechanical point of view, the complementarity condition
S− : (E − Z) = 0 in (24) implies that (E − Z) does not contribute to the strain energy, i.e.,
(E − Z) coincides with the amount of smeared crack.

The following lemma gives the relation between the strain energy w− of no-tension material
and w̃ of Hooke’s material:
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Lemma 4.2. w− and w̃ defined by (14)–(18) satisfy

w−(E) = min
�∈Sµ

{ w̃(Z)|Z � E} . (28)

Proof. Observe that the right hand side of (28) is regarded as the nonlinear SDP problem in
variable Z ∈ Sµ. Indeed, this problem is embedded into Problem (7) by putting

f(Z) :=
1
2
Z : C : Z, G(Z) := −Z + E.

It follows from Proposition 2.1 and the convexity of f and G that Z is an optimal solution of this
problem if and only if there exists a W ∈ Sn satisfying the following KKT conditions:

C : Z + W = O, (29)

− Z + E � O, W � O, W : (−Z + E) = 0. (30)

By putting W := −S−, we see that the conditions (29) and (30) are equivalent to

S− = C : Z, (31)

E − Z � O, −S− � O, S− : (E − Z) = 0, (32)

from which and Lemma 4.1 it follows that an optimal solution Z and the corresponding Lagrange
multiplier S− of the problem on the right hand side of (28) satisfy (15)–(17), i.e., if Z is an
optimal solution, then (31) is satisfied with the stress S− of no-tension material compatible to the
strain E. Recall that w− is defined by (19). By using (31) and the equality in (32), we obtain

S− : dE = S− : dZ = Z : C : dZ.

Hence, from (19), the implication

w−(E) =
∫

S− : dE =
∫

Z : C : dZ =
1
2
Z : C : Z = w̃(Z)

holds if (31) and (32) are satisfied. We have seen that the latter condition is equivalent to the
fact that Z is an optimal solution of the problem on the right hand side of (28), which completes
the proof.

Recall that an equilibrium configuration of the masonry structure is characterized as an optimal
solution of Problem (20). As our main result in this section, by using Lemma 4.2, we reformulate
Problem (20) into the (infinite-dimensional) SDP problem as follows:

Lemma 4.3. (E∗,u∗) is an optimal solution of Problem (20) if and only if (Z∗,u∗) is an optimal
solution of the following problem in variables Z and u:

(P−) : min
∫

Ω
(w̃(Z) − f · u) dΩ −

∫
Γt

t · udΓ

s.t. Z � E · u (in Ω),
u − u = 0 (on Γu),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (33)
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where

E∗ = E · u∗, (34)

Z∗ = C−1 : S−∗
, S−

ij
∗ =

∂w−(E)
∂Eij

∣∣∣∣
�=�∗

. (35)

Proof. By using Lemma 4.2, Problem (20) is equivalent to

min
∫

Ω

(
min
�∈Sµ

{w̃(Z)|Z � E} − f · u
)

dΩ −
∫

Γt

t · udΓ

s.t. E = E · u (in Ω),
u − u = 0 (on Γu).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (36)

Observe that, in Problem (36), only Z � E in the inner problem is the constraint on Z. Hence,
Problem (36) is equivalent to the following problem in variables Z, E, and u:

min
∫

Ω
(w̃(Z) − f · u) dΩ −

∫
Γt

t · udΓ

s.t. Z � E, E = E · u (in Ω),
u − u = 0 (on Γu).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (37)

It follows from the proof of Lemma 4.2 that (31) and (32) hold at an optimal solution of Prob-
lem (36). Since Problem (36) is equivalent to Problem (37), and by using Lemma 4.1, we see that
(35) is satisfied if (Z∗,E∗,u∗) is an optimal solution of Problem (37). Moreover, (34) holds at an
optimal solution of Problem (37). Consequently, (E∗,u∗) defined by (34) is an optimal solution of
Problem (20) if and only if (Z∗,E∗,u∗) defined by (35) is an optimal solution of Problem (37).

Lemma 4.3 implies that the equilibrium configuration u∗ of the masonry structure is obtained
by solving Problem (33) instead of Problem (20). Problem (33) is reduced to the following problem
in variables Z, u and τ :

min
∫

Ω
(τ − f · u) dΩ −

∫
Γt

t · udΓ

s.t. τ ≥ 1
2
Z : C : Z, E · u − Z � O (in Ω),

u = u (on Γu).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (38)

In Problem (38), it is known that the convex quadratic inequality

τ ≥ 1
2
Z : C : Z (39)

can be written as the linear matrix inequality in terms of τ and Z [4, Section 4.2]. However, in
Section 5, we transform (39) into a second-order cone [4, Section 3.3], which is also representable
as a linear matrix inequality. It follows from the definition (12) of E that the constraint

E · u − Z � O

12



is also the linear matrix inequality. Consequently, all the constraints of Problem (38) can be
represented as the linear matrix inequalities. Moreover, Problem (38) has the linear objective
function. Hence, Problem (38) is regarded as an SDP problem with the infinitely many variables.
This is important because the finite-dimensional SDP is the convex optimization problem which
can be solved efficiently by using the primal-dual interior-point method [18, 29]. Moreover, the
formulations of Problems (33) and (38) are independent of the existence and directions of cracks.
Hence, we can obtain the equilibrium configuration as an optimal solution of Problem (33) or (38)
without any assumption on cracks and/or stress states. We show in Section 5 that Problem (33)
is reduced to the SDP problem with finite number of variables by using the conventional finite-
element discretization.

Remark 4.4. The strain energy function w+ of no-compression material was defined in Remark 3.1.
In a similar manner to Lemma 4.2, we can show that w+ satisfies

w+(E) = min
�∈Sµ

{
w̃(Z)

∣∣Z � E
}
.

Hence, in a manner similar to Lemma 4.3, the minimization problem of total potential energy for
membrane can be reformulated as

(P+) : min
∫

Ω
(w̃(Z) − f · u) dΩ −

∫
Γt

t · udΓ

s.t. Z � E · u (in Ω),
u − u = 0 (on Γu).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (40)

Moreover, by introducing an auxiliary variable τ in a manner similar to Problem (38), we see that
Problem (40) is equivalent to

min
∫

Ω
(τ − f · u) dΩ −

∫
Γt

t · udΓ

s.t. τ ≥ 1
2
Z : C : Z, Z − E · u � O (in Ω),

u − u = 0 (on Γu),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (41)

which is also an infinite-dimensional SDP problem.

5 Finite element discretization of Problem (33)

In Section 4, we have established the convex (infinite-dimensional) variational problems for ma-
sonry structures and membranes. Since Problems (33) and (40) include an auxiliary variable Z,
these formulations are not suitable for constructing the conventional tangential stiffness. In this
section, we show that Problems (33) and (40) are discretized into the finite-dimensional SDP
problems, without constructing the tangent stiffness matrix. The resulting SDP problems are
solved by using the primal-dual interior-point method [29]. Thus, the discretization scheme in
this section is essentially required for our solution technique.
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Suppose that Ω is divided into nm isoparametric finite elements, each of which occupies Ωl ⊂
Rµ (l = 1, . . . , nm). Let al ∈ Rnd

e denote the displacements in the global coordinates x =
(xj) ∈ Rµ at the nodes belonging to the l-th element, where nd

e denotes the number of degrees of
freedom of each element. r = (rj) ∈ Rµ denotes the reference frame of the natural coordinates of
the isoparametric element [30]. The Jacobian matrix J is defined by dx = Jdr.

Assume that the vector field of displacements u ∈ Rµ in Ωl in the global coordinates is
approximated as

u � N (r) · al (in Ωl), (42)

where N (r) ∈ Rµ×nd
e is a matrix of shape function given in the element natural coordinate r [30].

Recall that the action of linear mapping E on u was defined by (12), which includes the differential
operations with respect to the global coordinate. Letting B = E · N , and by using (42), we see

E · u = B(r) · al, (43)

where B : Rnd
e 	→ Sµ. Let w ∈ Rnd

denote the vector of nodal displacements of the discretized
structure, where nd is the number of degrees of freedom after removing the constrained degrees
of freedom by supports. nd

f and nd
p, respectively, denote the numbers of unconstrained degrees of

freedom and degrees of freedom of prescribed displacements, where nd
f + nd

p = nd. The relation
between w and al can be written as

al = T l
f · w, (44)

where T l
f ∈ Rnd

e×nd
is a constant assignment matrix for each l = 1, . . . , nm. Letting ŵ ∈ Rnd

p

denote the vector of prescribed displacements, the boundary condition u − u = 0 on Γu in
Problem (20) is discretized as

T p · w − ŵ = 0, (45)

where T p ∈ Rnd
p×nd

is also a constant matrix.
Observe that the first term of the objective function of Problem (33) is reduced to∫

Ω
w̃(Z)dΩ =

nm∑
l=1

∫
Ωl

w̃(Z)dΩ. (46)

The integration on the right-hand side of (46) is calculated numerically by using the Gauss quadra-
ture. Consider ng sampling points of the Gauss formulas for each element Ωl. Then the integration
in (46) is approximated as ∫

Ωl

w̃(Z)dΩ �
ng∑
i=1

ρiw̃(ri) det J(ri), (47)
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where ri and ρi (i = 1, . . . , ng), respectively, denote the coordinates of sampling points and weights
of Gauss quadrature. For simplicity, we define ρ̂i by

ρ̂i = ρi detJ(ri) (i = 1, . . . , ng).

In accordance with (47), we evaluate Z in Problem (33) at the sampling points ri for the
Gauss integration. Letting

Z l
i := Z(ri) (in Ωl),

for each i = 1, . . . , ng, we have

w̃(ri) =
1
2
Zl

i : C : Zl
i (48)

from (14). Similarly, letting Bi := B(ri), and by using (43), we have

E · u = Bi · T l
f · w (in Ωl) (49)

at each sampling points. Let f ∈ Rnd
f denote the discretized external force vector, which is applied

to the unconstrained degrees of freedom. f̂ ∈ Rnd
denotes the vector consisting of all elements of

f and 0 for constrained degrees. By using (45)–(49), Problem (33) is discretized into the following
finite-dimensional problem:

(P−
FEM) : min

nm∑
l=1

ng∑
i=1

ρ̂i

2
Zl

i : C : Z l
i − f̂ · w

s.t. −Zl
i + Bi · T l

f · w � O (i = 1, . . . , ng; l = 1, . . . , nm),
T p · w − ŵ = 0,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (50)

where independent variables are w ∈ Rnd
and Z l

i ∈ Sµ (i = 1, . . . , ng; l = 1, . . . , nm).
The remainder of this section is devoted to showing that Problem (50) coincides with the (finite-

dimensional) SDP problem, which enables us to utilize the existing well-developed softwares based
on the primal-dual interior-point method for SDP.

Let ‖q‖ denote the standard Euclidean norm of q ∈ Rn defined by ‖q‖ = (q�q)1/2. Rn
+ ⊂ Rn

and Ln
+ ⊂ Rn denote the non-negative orthant and the second-order cone [4], respectively, defined

by

Rn
+ = {p = (p1, . . . , pn) ∈ Rn|pi ≥ 0 (i = 1, . . . , n)},

Ln
+ = {p = (p0,p1) ∈ R× Rn−1|p0 ≥ ‖p1‖}.

Sn
+ ⊂ Sn is defined by

Sn
+ = {P ∈ Sn|Sn � O}.
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In order to solve Problem (50), we use the primal-dual interior-point method for SDP, which finds
an optimal solution of the SDP problem. Some of these softwares, e.g., SeDuMi [27], are designed
to solve the (dual) SDP problems in the following form:

max b�y

s.t. c − A�y ∈ K,

}
(51)

where

K = RnR

+ × LnL
1

+ × · · · × L
nL

p

+ × SnS
1

+ × · · · × SnS
q

+ .

As known well, SDP includes LP and SOCP as particular cases [29]. Indeed, by taking K = RnR

+

and K = LnL
1

+ × · · · × L
nL

p

+ , Problem (51) is reduced to the LP and SOCP problems, respectively.
We transforms Problem (50) into the form of Problem (51).

By introducing the auxiliary variables τ l
i , Problem (50) is equivalent to the following problem

formulated in variables Zl
i, w, and τ l

i :

min
nm∑
l=1

ng∑
i=1

τ l
i − f̂ · w

s.t. τ l
i ≥

ρ̂i

2
Zl

i : C : Zl
i, −Zl

i + Bi · T l
f · w � O

(i = 1, . . . , ng; l = 1, . . . , nm),
T p · w − ŵ = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(52)

Recall that the operator evec has been introduced in (3), which expresses the transformation
from a strain tensor into a strain vector. It follows from the positive definiteness of C that there
exists a positive definite matrix Ĉ ∈ S�µ satisfying

Z : C : Z = evec(Z)�Ĉ evec(Z),

where

µ̂ = µ(µ + 1)/2.

We introduce new variables ζl
i ∈ R�µ (i = 1, . . . , ng; l = 1, . . . , nm) by

ζl
i = evec(Z l

i),

which is alternatively written as

Zl
i = Mat(ζ l

i).

Since Ĉ is nonsingular, there exists a G ∈ R�µ×�µ satisfying Ĉ = G�G. For example, we can
choose G as the Cholesky factor of Ĉ. Then the convex quadratic inequality

τ l
i ≥

ρ̂i

2
ζl

i
�
Ĉζl

i
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can be expressed via a second-order cone as [see 4, § 3.3.1]

τ l
i

2ρ̂i
+ 1 ≥

∥∥∥∥∥∥
⎛⎝ τ l

i

2ρ̂i
− 1

Gζl
i

⎞⎠∥∥∥∥∥∥ .

Hence, Problem (52) is reduced to

min
nm∑
l=1

ng∑
i=1

τ l
i − f̂ · w

s.t. T p · w − ŵ ∈ R
nd

p

+ , −T p · w + ŵ ∈ R
nd

p

+ ,⎛⎜⎜⎜⎜⎝
τ l
i

2ρ̂i
+ 1

τ l
i

2ρ̂i
− 1

G · ζl
i

⎞⎟⎟⎟⎟⎠ ∈ L�µ+2
+ (i = 1, . . . , ng; l = 1, . . . , nm),

−Mat(ζl
i) + Bi · T l

f · w ∈ Sµ
+ (i = 1, . . . , ng; l = 1, . . . , nm),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(53)

where the independent variables are (ζ,w, τ ) ∈ R�µngnm × Rnd × Rngnm
with ζ = (ζ1

1, . . . , ζ
ng

nm)
and τ = (τ1

1 , . . . , τng

nm). Recall that the constraint with the Mat operator in the form of (4) is the
linear matrix inequality, which appears in the dual standard form of SDP problem (6). Thus, we
see that Problem (53) is embedded into Problem (51) with

K = R
2nd

p

+ × (L�µ+2
+ × Sµ

+)n
gnm

.

It should be emphasized that Problem (53) is an SDP problem which can be solved efficiently
by using the primal-dual interior-point method [29], and the number of arithmetic operations is
bounded by a polynomial of µ, nd

p, ng, and nm. Since the constitutive law (15)–(17) of no-tension
material depends on the stress states, the conventional method based on the tangent stiffness
requires assumptions of stress states, especially the existence and directions of cracks. On the
other hand, Problem (53) can be solved without any assumption, which is regarded as the major
advantage of our method.

Remark 5.1. In a similar manner to Problem (50), the finite-element discretization of Problem (40)
for membrane is obtained as

(P+
FEM) : min

nm∑
l=1

ng∑
i=1

ρ̂i

2
Z l

i : C : Z l
i − f̂ · w

s.t. Z l
i − Bi · T l

f · w � O (i = 1, . . . , ng; l = 1, . . . , nm),
T p · w − ŵ = 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (54)
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Figure 2: The square wall.

Problem (54) is transformed into the form of Problem (51) as

min
nm∑
l=1

ng∑
i=1

τ l
i − f̂ · w

s.t. T p · w − ŵ ∈ R
nd

p

+ , −T p · w + ŵ ∈ R
nd

p

+ ,⎛⎜⎜⎜⎜⎝
τ l
i

2ρ̂i
+ 1

τ l
i

2ρ̂i
− 1

G · ζl
i

⎞⎟⎟⎟⎟⎠ ∈ L�µ+2
+ (i = 1, . . . , ng; l = 1, . . . , nm),

Mat(ζl
i) − Bi · T l

f · w ∈ Sµ
+ (i = 1, . . . , ng; l = 1, . . . , nm).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(55)

6 Examples

Equilibrium configurations are computed for structures consisting of no-tension or no-compression
material by using the SDP formulations proposed in Section 5. The SDP problems are solved by
using SeDuMi Ver. 1.05 [27], which implements the primal-dual interior-point method for the
linear programming problems over symmetric cones [4]. Computation has been carried out on
Pentium M (1.5GHz with 1GB memory) with MATLAB Ver. 6.5.1 [22].
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Figure 3: The relation between α and δ (cm) of the square wall; −: no-tension material; ×:
Hooke’s material.

6.1 Masonry structure

Consider the masonry square wall illustrated in Fig.2, which consists of the isotropic no-tension
material in a state of plane stress. A similar numerical example was investigated by Maier and
Nappi [20] with the linear approximation of the admissible region of stresses.

The square wall is discretized into four-node quadrilateral isoparametric finite elements, where
nm = 16. The elastic modulus and Poisson’s ratio are given as 102 GPa and 0.2, respectively.
The thickness of the wall is 10 cm. Four sampling points are considered for each element in order
to carry out the Gauss integration and evaluate the strain components, i.e., ng = 4. Node (j)
is pin-supported, whereas the displacements in the y-direction are constrained at nodes (f)–(i),
i.e., nd = nd

f = 44 and nd
p = 0. Hence, the dimensions of resulting SDP problem (53) are

(ζ,w, τ ) ∈ R300 and K = (L5
+ × S2

+)64.
The constant uniform loading q0 = 180 Ncm−1 is applied to the segment (a)–(e) in the negative

direction of the y-axis. αq0 is applied to the segment (e)–(f) in the positive direction of the x-axis
with the load factor α > 0. The x-component of the displacement of node (a) is denoted by δ. The
equilibrium configurations are computed by solving Problem (53) with SeDuMi [27] for various
values of α. The obtained results of δ against α are indicated in Fig.3 by the solid curve, where we
increase α successively with 245 steps. The mean and standard deviation of CPU time for solving
Problem (53) at each step, respectively, are 0.65 sec and 0.21 sec. For comparison purpose, the
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(a) deformed configuration and crack strains
(displacements amplified twice) (b) principal stresses

Figure 4: Equilibrium state of the square wall with the no-tension material at α = 1.225 and
δ = 7.001 cm.

(a) deformed configuration (displacements
amplified 50 times)

(b) principal stresses

Figure 5: Equilibrium state of the square wall with Hooke’s material at α = 1.225 and δ =
0.278 cm.
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(a) deformed configuration and wrinkle strains (b) principal stresses

Figure 6: Equilibrium state of the square membrane.

solutions for Hooke’s material are also indicated by ×. At α = 1.225, the obtained configurations
of the no-tension material and Hooke’s material, respectively, are illustrated in Fig.4 (a) and
Fig.5 (a). The principal values and directions of stresses at the Gauss integration points are
illustrated in Fig.4 (b) and Fig.5 (b). Here, the solid segments are parallel to the principal axes of
stresses, i.e., to the eigenvectors of stress tensors, and the length of each segment is proportional
to the modulus of corresponding principal value. Fig.4 (a) also illustrates the principal directions
and principal values of (E − Z) at the integration points. Hence, smeared cracks are observed in
the directions orthogonal to the segments indicated in Fig.4 (a), and the amount of each crack is
proportional to the length of corresponding segment. It is observed from Fig.4 that the proposed
method finds the equilibrium configuration without any difficulty if many cracks occur in various
directions.

6.2 Membrane

Suppose that the square wall illustrated in Fig.2 consists of the no-compression material, where
the elastic modulus, Poisson’s ratio, and the thickness are 2.5 GPa, 0.2, and 0.4 cm, respectively.
The equilibrium configuration is computed based on the SDP formulation (54) of the minimization
problem of total potential energy.

Nodes (f)–(j) are pin-supported, i.e., nd = 40, whereas nodes (a)–(e) are subjected to the
prescribed displacements of 20 cm in the positive direction of the y-axis, i.e., nd

p = 5 and nd
f = 35.

Hence, the dimensions of resulting SDP problem (55) are (ζ,w, τ ) ∈ R296 and K = R10
+ × (L5

+ ×
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S2
+)64.

No external forces are applied, i.e., f̂ = 0. The obtained equilibrium configuration is illustrated
in Fig.6 (a), where the CPU time of 0.46 sec is required by SeDuMi [27]. Fig.6 (a) also illustrates
the principal directions and values of (Z − E) at the integration points, where the direction of
each segment is orthogonal to wrinkling pattern, and the length of each segment is proportional
to the amount of wrinkle. The corresponding principal stresses are illustrated in Fig.6 (b). It is
observed from Fig.6 (a) that the presented method can find the equilibrium configuration, as well
as the wrinkling pattern, without any difficulty even if many elements are wrinkling.

7 Conclusions

A unified approach based on SDP has been proposed for finding equilibrium configurations of
structures consisting of no-tension or no-compression isotropic non-dissipative material under the
assumption of small deformations.

A convex variational problem has been formulated which gives the same optimizer as that of
the minimization problem of total potential energy. By applying the conventional displacement-
based finite-element discretization procedure, the proposed variational problem can be discretized
into the SDP problem. We can obtain an equilibrium configuration an optimal solution of the
presented SDP problem by using the primal-dual interior-point method.

The presented SDP formulation is independent of the fact that the structure is two- or three-
dimensional. Moreover, the formulation includes no a priori knowledge on the stress states. There-
fore this method does not involve any processes of trial-and-error even if the structure has com-
plicated patterns of smeared cracks or wrinkling. It is guaranteed that the number of arithmetic
operations required by this method is bounded by a polynomial of the size of problem. Numerical
examples have shown the effectiveness of this method for the cases of many cracks or wrinkles
occur at equilibrium configurations.

Besides these advantages, SDP can be solved efficiently by using the well-developed softwares
based on the primal-dual interior-point method. Hence, no effort is required to develop any
analysis software, and we only have to prepare the constant matrices and vectors defining the SDP
problems. Since our finite-element discretization is based on the usual displacement-based finite
element methods, it is easy to construct these matrices and vectors by utilizing the conventional
softwares of finite element method.
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