Errata and Supplements to

"Nonsmooth Mechanics and Convex Optimization"

(CRC Press, 2011)

- Page 8, (1.3): $\forall x \in \mathcal{K} \rightarrow x \in \mathcal{K}$
- • Page 17, proof of Fact 1.3.15: $A\bullet B=A^{1/2}BA^{1/2}\qquad \rightarrow \qquad A\bullet B={\rm tr}(A^{1/2}BA^{1/2})$
- Page 23, proof of Fact 1.4.6:

From (1.18) and the equality in (1.20), we obtain

$$x_0 = \|\boldsymbol{x}_1\|, \quad s_0 = \|\boldsymbol{s}_1\|.$$
 (1.21)

The equality in (1.19) holds if and only if either

$$\begin{cases} \boldsymbol{x}_1 = \boldsymbol{0}; \\ \boldsymbol{s}_1 = \boldsymbol{0}; \\ \boldsymbol{x}_1 \neq \boldsymbol{0}, \ \boldsymbol{s}_1 \neq \boldsymbol{0}, \ \text{and} \ \boldsymbol{x}_1 = -\alpha \boldsymbol{s}_1 \ (\alpha > 0) \end{cases}$$
 (1.22)

is satisfied.¹⁶ Thus we see that (a) holds if and only if (1.21) and (1.22) are satisfied. but the latter condition is equivalent to (c).

 \downarrow

The equality in (1.19) holds if and only if either

$$\begin{cases}
\mathbf{x}_1 = \mathbf{0}; \\
\mathbf{s}_1 = \mathbf{0}; \\
\mathbf{x}_1 \neq \mathbf{0}, \ \mathbf{s}_1 \neq \mathbf{0}, \ \text{and} \ \mathbf{x}_1 = -\alpha \mathbf{s}_1 \ (\alpha > 0)
\end{cases}$$
(1.21)

is satisfied.¹⁶ With reference to (1.18) and the equality in (1.20), we obtain $x_0 = 0$ if $x_1 = 0$ and $s_0 = 0$ if $s_1 = 0$. Furthermore, in the final case of (1.21) we obtain

$$x_0 = ||x_1||, \quad s_0 = ||s_1||.$$
 (1.21)

From this observation we conclude that (a) is equivalent to (c).

• Page 54, the 1st line of section 2.2.4:

"We here establish the optimality conditions for (P) and (P*). We assume that Φ is a closed proper convex function."

• Page 59, Definition 2.2.13:

$$L: \mathbb{V} \times \mathbb{Y}^* \to \mathbb{R} \cup \{+\infty\} \qquad \to \qquad L: \mathbb{V} \times \mathbb{Y}^* \to \mathbb{R} \cup \{-\infty\}$$

• Page 62, eq. (2.44):

$$\Phi(\boldsymbol{x}; \boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases}
f_0(x) & \text{if } f_j(x) + z_j \leq 0 \quad (j = 1, \dots, m), \\
h_l(x) + \nu_l = 0 \quad (l = 1, \dots, k), \\
+\infty & \text{otherwise,}
\end{cases}$$

 \downarrow

$$\Phi(\boldsymbol{x}; \boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases}
f_0(x) & \text{if } f_j(x) + \lambda_j \leq 0 \quad (j = 1, \dots, m), \\
h_l(x) + \nu_l = 0 \quad (l = 1, \dots, k), \\
+\infty & \text{otherwise,}
\end{cases}$$

• Page 107, Figure 4.4(a):

 \rightarrow

• Page 257, (9.6):

$$\omega_1(\boldsymbol{\varepsilon}_{\mathbf{w}}) > 0, \quad \omega_2(\boldsymbol{\varepsilon}_{\mathbf{w}}) > 0,$$
 (9.6a)

$$\omega_1(\boldsymbol{\varepsilon}_{\mathbf{w}}) > 0, \quad \omega_2(\boldsymbol{\varepsilon}_{\mathbf{w}}) = 0,$$
 (9.6b)

$$\omega_1(\boldsymbol{\varepsilon}_{\mathbf{w}}) = 0, \quad \omega_2(\boldsymbol{\varepsilon}_{\mathbf{w}}) = 0$$
 (9.6c)

 \downarrow

$$\lambda_1(\boldsymbol{\sigma}) > 0, \quad \lambda_2(\boldsymbol{\sigma}) > 0,$$
 (9.6a)

$$\lambda_1(\boldsymbol{\sigma}) > 0, \quad \lambda_2(\boldsymbol{\sigma}) = 0,$$
 (9.6b)

$$\lambda_1(\boldsymbol{\sigma}) = 0, \quad \lambda_2(\boldsymbol{\sigma}) = 0$$
 (9.6c)

• Page 277, (9.72):

$$\langle z^*, \Lambda \rangle \qquad \rightarrow \qquad \langle z^*, \Lambda x \rangle$$

• Page 313, 2 lines below (10.3b):

$$m{r}(r_{
m n}, m{r}_{
m t}) \qquad
ightarrow m{r} = (m{r}_{
m t}, r_{
m n})$$

• Page 327, (10.35):

$$\left\{ \begin{array}{lll} \Delta u_{\rm t} > 0 & \quad \Rightarrow & r_{\rm t} \leq 0, \\ \Delta u_{\rm t} < 0 & \quad \Rightarrow & r_{\rm n} \geq 0. \end{array} \right.$$

$$\downarrow$$

$$\left\{ \begin{array}{lll} \Delta u_{\rm t} > 0 & \quad \Rightarrow & r_{\rm t} \leq 0, \\ \Delta u_{\rm t} < 0 & \quad \Rightarrow & r_{\rm t} \geq 0. \end{array} \right.$$

• Page 340, 6 lines below (10.81):

$$0 \le \alpha \langle \boldsymbol{x} - \bar{\boldsymbol{y}}, \boldsymbol{y} - \bar{\boldsymbol{y}} \rangle + \alpha^2 \|\boldsymbol{y} - \bar{\boldsymbol{y}}\|^2.$$

$$\downarrow$$

$$0 \le 2\alpha \langle \boldsymbol{x} - \bar{\boldsymbol{y}}, \boldsymbol{y} - \bar{\boldsymbol{y}} \rangle + \alpha^2 \|\boldsymbol{y} - \bar{\boldsymbol{y}}\|^2.$$

• Page 358, footnote 5:

$$f(\boldsymbol{\sigma}) = \|\operatorname{dev}(\boldsymbol{\sigma})\| = \left[\left(\boldsymbol{\sigma} - \frac{1}{3}\operatorname{tr}(\boldsymbol{\sigma}) \right) : \left(\boldsymbol{\sigma} - \frac{1}{3}\operatorname{tr}(\boldsymbol{\sigma}) \right) \right]^{1/2} = \left[\boldsymbol{\sigma} : \boldsymbol{\sigma} - \frac{1}{3}(\boldsymbol{I} : \boldsymbol{\sigma})^2 \right]^{1/2},$$

$$\downarrow$$

$$f(\boldsymbol{\sigma}) = \|\operatorname{dev}(\boldsymbol{\sigma})\| = \left[\left(\boldsymbol{\sigma} - \frac{1}{3}\operatorname{tr}(\boldsymbol{\sigma}\boldsymbol{I}) \right) : \left(\boldsymbol{\sigma} - \frac{1}{3}\operatorname{tr}(\boldsymbol{\sigma}\boldsymbol{I}) \right) \right]^{1/2} = \left[\boldsymbol{\sigma} : \boldsymbol{\sigma} - \frac{1}{3}(\boldsymbol{I} : \boldsymbol{\sigma})^2 \right]^{1/2},$$