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Abstract
A mathematical programming problem is proposed for form-finding of cable domes. The optimality condi-
tions of the problem are derived to guarantee that the optimal solution coincides with the self-equilibrium
configuration of the cable dome with specified member axial forces. The number of independent axial
forces is investigated under the geometrical constraints as well as equilibrium conditions. An algorithm for
designing cable domes is presented by using the primal-dual interior-point method. The self-equilibrium
configurations are computed to demonstrate efficiency of the proposed algorithm.

1 Introduction

Cable domes belong to a class of truss structures that cannot attain a stable equilibrium configu-
ration without introducing prestresses to some members (Pellegrino, 1992). Tensegrities (Vilney,
1991; Murakami, 2001; Sultan et al., 2001) and cable networks (Levy and Spillers, 1998) are
included in the class of cable domes as special cases. In this paper, a nonlinear programming
approach is proposed for initial form-finding of cable domes.

For form-finding problem of cable domes, Kawaguchi et al. (1999) proposed a least-square
problem of nodal displacements with the specified external forces. Yuan and Dong (2002) pre-
sented a minimization problem of initial tention forces under stress constraints. As a pioneering
work of form-finding, so-called force-density method was proposed by Schek (1974), which obtains
the coordinates of internal nodes of the cable network with specified force-density of each member;
i.e., the ratio of axial force to member length at the equilibrium state. However, from the practical
point of view, it is strongly recommended to specify the axial forces directly, which has motivated
the subsequent studies such as the smoothing method (Levy and Spillers, 1998).

We specify the member axial forces at the equilibrium state as well as the topology of the
cable dome; i.e., the connectivity of cables and struts, and obtain the equilibrium configuration
and initial length of each member. To this end, we propose a nonlinear programming (NLP)
problem such that the optimal solution coincides with the equilibrium configuration with the
specified axial forces.

For cable networks, which can be regarded as special cable domes without struts, the proposed
optimization problem can be shown to be reduced to second-order cone programming (SOCP)
problem (Ben-Tal and Nemirovski, 2001). SOCP is known as a special class of convex optimization
problems, which is efficiently solvable by using the polynomial-time interior-point algorithms. The
problem proposed for cable domes is nonconvex. However, it can be regarded as a natural extension
of SOCP.

The set of member axial forces cannot be specified arbitrarily because (i) the axial forces
should satisfy the equilibrium equations, and a set of axial forces is not necessarily realized by
any configurations; (ii) the configurations of most cable domes actually built have some symmetry
properties. In order to design the symmetric cable domes, we can conject that the same axial forces
should be assigned to the symmetrically located members. These motivate us to investigate how
to find an admissible set of axial forces. From equilibrium conditions with geometrical nonlinearity
and the symmetry conditions based on the group representation theory (Ikeda and Murota, 2002),
we derive a necessary and sufficient condition for the maximal subset of axial forces which can be
specified arbitrarily.
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2 Form-finding problem of cable domes

Consider a cable dome in three dimensional space. Let nm denote the number of members including
both cables and struts. Assume that each cable and strut member can transmit only tension and
compression forces, respectively. The subsets IC and IS of {1, . . . , nm}, respectively, are defined
as the sets of all indices of cables and struts.

Let nd denote the number of freedom of displacements. Consider the equilibrium state that
was attained after introducing prestresses to some cables without external forces. Our objective
is to obtain the coordinates of internal nodes x ∈ �nd

and the initial unstressed length l0i of each
member which satisfies the equilibrium conditions with the specified axial forces q∗i (i = 1, . . . , nm).
As the first step, we specify the cross-sectional area Āi and the strain ε̄i of the ith member, where

ε̄i =

{
ε̄ (i ∈ IC),
−ε̄ (i ∈ IS),

(1)

for a given ε̄ > 0, and formulate the form-finding problem as an NLP problem.
The standard Euclidean norm of vector p ∈ �n is defined as ‖p‖ = (p�p)1/2. The member

length li at the equilibrium state can be written as

li = ‖Bix − di‖ (i = 1, . . . , nm), (2)

where Bi ∈ �3×nd
is a constant matrix determined only by the connectivity of nodes, and each of

its elements is equal to either {−1, 0, 1}. di ∈ �3 is a constant vector that consists of the specified
nodal coordinates of a support if the ith member is connected to the support, otherwise di = 0.

For simplicity, we assume a linear elastic material, where the Young’s modulus is denoted by
E. Consider the following problem:

(D(ε̄)) :min
∑
i∈IC

1
2
EĀiε̄

2l0i −
∑
i∈IS

1
2
EĀiε̄

2l0i

s.t. (1 + ε̄)l0i ≥ ‖Bix − di‖ (i ∈ IC),
(1 − ε̄)l0i ≤ ‖Bix − di‖ (i ∈ IS),

where l0 = (l0i ) ∈ �nm
and x ∈ �nd

are variables. Notice here that the objective function and the
constraints of (D) correspond to the difference of the total strain energy of cables and struts, and
the relaxed compatibility conditions, respectively.
Lemma 1. Suppose l̃0i > 0 (i = 1, . . . , nm). (l̃0, x̃) ∈ �nm ×�nd

is a local optimal solution of (D)
only if there exists a q̃ = (q̃i) ∈ �nm

satisfying

q̃i = EĀiε̄i (i = 1, . . . , nm), (3)
nm∑
i=1

B�
i q̃i

Bix̃ − di

‖Bix̃ − di‖ = 0, (4)

(1 + ε̄i)l̃0i = ‖Bix̃ − di‖ (i = 1, . . . , nm). (5)

Proof. Since (D) is a minimization problem and the objective function is an monotonic function
of l0i , we see that all the constraints are active at any local optimal solution; i.e., the condition (5)
is satisfied. From this and the Karush–Kuhn–Tucker conditions of (D), Lemma 1 is immediately
obtained.
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The following lemma guarantees that the (local) optimal solution of (D) satisfies the equilib-
rium conditions. This lemma plays a key role in the subsequent formulations.
Lemma 2. Let (l̃0, x̃) denote a local optimal solution of (D). C(l̃0) denotes the cable dome where
the initial unstressed length of each member is specified as l̃0i (i = 1, . . . , nm). Then, ε̄i and x̃ co-

incide with the member strain and the vector of coordinates of internal nodes of C(l̃0), respectively,
at the equilibrium state.

Proof. Let l̃0 be constant. Consider the following problem:

(A(l̃0)) :min
∑

i∈IC∪IS

1
2
EĀiε

2
i l̃

0
i

s.t. (1 + εi)l̃0i = ‖Bix − di‖ (i ∈ IC ∪ IS),

where ε = (εi) ∈ �nm
and x ∈ �nd

are variables; i.e., (A(l̃0)) is the minimization problem of the
total potential energy for C(l̃0). Suppose ε̂i �= −1 (i = 1, . . . , nm). (ε̂, x̂) ∈ �nm × �nd

is a local
optimal solution of (A(l̃0)) only if there exists a q̂ = (q̂i) ∈ �nm

satisfying

q̂i = EĀiε̂i (i = 1, . . . , nm) (6)
nm∑
i=1

Biq̂i
Bix̂ − di

‖Bix̂ − di‖ = 0, (7)

(1 + ε̂i)l̃0i = ‖Bix̂ − di‖ (i = 1, . . . , nm). (8)

From the stationary principle of the total potential energy, ε̂i, q̂i and x̂ satisfying (6)–(8) corre-
spond to the strain and the axial force of each member, and the vector of internal nodes, respec-
tively, at the equilibrium state of C(l̃0). By putting q̃ = q̂ and x̃ = x̂, we can see that Lemma 2
follows the fact such that (6)–(8) are equivalent to (3)–(5), which concludes the proof.

3 On cable networks

Cable networks are included in the class of cable domes as the special case IS = ∅. In this section,
we investigate (D) and (A) for cable networks. Let vi ∈ �3 and v = (v1, . . . ,vnm) ∈ �3nm

.
Lemma 3. Suppose IS = ∅. (l̃0, x̃) ∈ �nm × �nd

is a global optimal solution of (D) if and only
if there exists a (q̃, ṽ) ∈ �nm ×�3nm

satisfying

q̃i = EĀiε̄i, q̃i ≥ ‖ṽi‖ (i = 1, . . . , nm), (9)
nm∑
i=1

B�
i ṽi = 0, (10)

(1 + ε̄)l̃0i ≥ ‖Bix̃ − di‖ (i = 1, . . . , nm), (11)

Proof. This lemma follows the KKT conditions for the nondifferentiable convex optimization
problem (Rockafellar, 1970, Theorem 31.3) and the self-duality of the second-order cone (Ben-Tal
and Nemirovski, 2001).
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Notice here that Lemma 3 states the necessary and sufficient conditions for global optimality,
whereas Lemma 1 states the necessary conditions for local optimality. Moreover, we see that
(D) for IS = ∅ is an SOCP problem (Ben-Tal and Nemirovski, 2001), which is a special class
of convex optimization problems. The authors showed that the equilibrium shapes and member
initial lengths of cable networks can be obtained by solving that SOCP problem by using the
primal-dual interior-point method (Kanno and Ohsaki, 2002).

We also showed that, for IS = ∅, (A) can be reformulated into the following convex problem:

(AC(l̃0)) :min
∑
i∈IC

1
2
EĀiε

2
i l̃

0
i

s.t. (1 + εi)l̃0i ≥ ‖Bix − di‖ (i ∈ IC),

which is also embedded into an SOCP problem. See, Kanno et al. (2002) for more details.

4 Maximal set of independent axial forces

In (D), we cannot specify all Āis arbitrary. Let β denote the maximal number of independent Āi,
or q∗i . Note that the most of cable domes actually built have some symmetry properties, e.g., as
shown in Fig.1. Hence, we have β < nm because (i) the axial forces should satisfy the equilibrium
equations, and a set of axial forces is not necessarily realized by arbitrary configurations; (ii) in
accordance with the symmetry of configuration, the distribution of axial forces should also have
some symmetry property.

Letting vi ∈ �3 denote the internal force vector of the ith member, we have qi = EAiε̄ = ‖vi‖.
The equilibrium equations are written as

nm∑
i=1

B�
i vi = 0, (12)

which are valid under finite deformation. We write B = [B�
1 , . . . ,B�

nm ]� ∈ �3nm×nd
for simplicity.

Then (12) is written as B�v = 0. Under assumptions such that the cable dome is simply
connected, we can show rankB = nd (Kanno and Ohsaki, 2003). Hence, we have β = 3nm − nd

if the constraints on symmetry of configuration is not included.
Suppose that we make the constraint such that the configuration of the cable dome should

have some symmetry. For each i = 1, . . . , nm, define h̃i ∈ �3 and l̃i ∈ � by

h̃i = Bix̃ − di, l̃i = ‖h̃i‖, (13)

where h̃i and l̃i = (1+ ε̄)l̃0i correspond to the deformation vector and the length of the ith member
at the optimal solution of (D). The invariance condition of configuration; i.e., the symmetry
property of configuration, can be written as

C�h̃ = 0, (14)

where C ∈ �3nm×3ng
is an appropriate constant matrix and h̃ = (h̃1, . . . , h̃nm) ∈ �3nm

. Letting
G denote the finite group which labels the symmetry of h, ng is the positive integer determined
from the number of all inequivalent irreducible unitary representations of G (See, e.g, Ikeda and
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Fig. 1: Cable dome.

Murota (2002) for the basic buckground of the group representation theory). It follows from the
second equation in (13) that (14) can be rewritten as

C�
A l̃ = 0, (15)

where CA ∈ �nm×ng
is constant, and l̃ = (l̃i) ∈ �nm

. The distribution of member cross-sectional
areas should also have the symmetry property, which is written by using the same matrix CA in
(15) as

C�
AĀ = 0, (16)

where Ā = (Āi) ∈ �nm
. Recall that we specify the strains ε̄i as (1), and vi = EĀiε̄ihi/‖hi‖. By

using the symmetry of Ā, (14) is reduced to

C�ṽ = 0. (17)

Accordingly, v should satisfy the system of (12) and (17), from which it follows that

β = 3nm − rank(B,C)� (18)

There exists a set of independent rank(B,C)� column vectors in the matrix (B̃, C̃)�, and
we can choose β column vectors that do not belong to that set. Hence, we have β members
corresponding to the selected column vectors, and Āi or q∗i can be specified arbitrary for these
members.

Suppose that we specify the axial force q∗i and the cross-sectional area A∗
i of each member.

Then, the strain ε∗i at the equilibrium state should satisfy

q∗i = EA∗
i ε

∗
i (i = 1, . . . , nm),

which implies that specifying A∗
i and q∗i is equivalent to specifying A∗

i and ε∗i . Moreover, we can
always choose Āi > 0 and ε̄ > 0 such that

A∗
i |ε∗i | = Āiε̄ (i = 1, . . . , nm). (19)

Accordingly, the equilibrium configuration x of the cable dome with the specified axial forces q∗

can be obtained by using the following algorithm:
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Algorithm 4.

Step 1 Set the topology Bi, IC and IS, the coordinates of supports di, and the symmetry
property CA and C.

Step 2 Compute β from (18).

Step 3 Specify q∗i ; i.e., the pairs of A∗
i and ε∗i of β members.

Step 4 For the given ε̄ > 0, compute Āi of β members from (19).

Step 5 Compute Āi of the remaining nm − β members from (16) and the equilibrium equations.

Step 6 Compute a solution of (D) by using the interior-point method.

In Step 5 of Algorithm 4, we compute the unknown Āis from (16) after substituting the Āis of
β members obtained in Step 4. Although we prepare the matrix (B,C)� in Step 2, the unknown
Āis can be obtained by solving the small scale equilibrium equations at a node connected by
each member with unknown Āi; i.e. it is not required to solve the large scale linear equations
(B,C)�v = 0 in Step 5.

5 Examples

Consider the cable dome as shown in Fig.1 that has 16 struts. We specify the coordinates of
supports, whereas the coordinates of internal nodes are unknown. Let s and r(ϕ), respectively,
denote the reflection with respect to the xz-plane and the counter-clockwise rotation around the
z-axis with the angle ϕ. We make the constraints such that the geometry of this cable dome
should be symmetric with respect to any transformation by the element of the dihedral group of
degree 8 defined as

D8 =
{
r(πk/4), sr(πk/4)

∣∣(k = 1, . . . , 8)
}
.

From the rotational symmetry of the dome, we only have to consider the plane element as shown
in Fig.2, where nm = 16, nd = 16, IC = {1, . . . , 12} and IS = {13, . . . , 16}. The tension forces of
the members 3, 4, 7, and 8 in Fig.1, which are denoted by qh

i (i = 3, 4, 7, 8), are modeled by those
of members 3, 4, 7 and 8 in Fig.2 as

qi = 2qh
i sin

(π

8

)
(i = 3, 4, 7, 8).

Then the symmetry constraints are reduced to those with respect to z-axis on the model shown in
Fig.2, from which we obtain rank(B,C)� = 24. By applying (18) to the two-dimensional model,
we see β = 2nm−rank(B,C)� = 8. It is easily verified that we can choose the set of 8 members as
{2, 3, 4, 6, 7, 8, 13, 14}. Suppose the cross-sectional areas are assigned as listed in Tab.1. From the
equilibrium equations, Ā1 = 27.1141 and Ā5 = 2.7114 are obtained, whereas Āi (i ∈ {9, . . . , 12})
are immediately obtained from the symmetry conditions.

Letting E = 205.8 GPa and ε̄ = 1.0×10−3, the problem (D) has been solved by using NUOPT
(1998), which is an implementation of primal-dual interior-point method for NLP. The obtained
equilibrium configuration is as shown in Fig.3. At each node, the norm of unbalanced force is
within 10−6 of the average norm of axial forces, which illustrates the accuracy of the proposed
method.
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Table 1: Specified values of Ā∗
i .

member Ā∗
i (cm2) member Ā∗

i (cm2) member Ā∗
i (cm2)

2 30.0 6 3.0 13 10.0
3 35.0 7 3.5 14 1.0
4 28.0 8 3.5

1
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4

7

8

5

6

9

10

11

12

13

14 15

16

Fig. 2: Plane element.
Fig. 3: Equilibrium configuration.

6 Conclusions

We have formulated the form-finding problem of cable domes as an NLP problem with the specified
axial forces, which can be regarded as the minimization problem of the difference of the total
strain energy between cable members and struts under constraints on compatibility conditions.
By investigating the optimality conditions, it has been guaranteed that the optimal solution of the
proposed NLP problem satisfies the equilibrium conditions. We have also proposed the method
to find a maximal set of independent axial forces explicitly considering the specified symmetry
property of the geometry of the structure.

It has been demonstrated in the numerical example that the set of admissible axial forces can
be found by using the proposed algorithm. Since we can solve the proposed NLP promlem by the
well-developed existing softwares of NLP based on primal-dual interior-point method, our task is
only to input geometrical and material information of cable domes, and no effort is required to
develop any analysis software.

References

Ben-Tal, A. and Nemirovski, A. (2001), Lectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering Applications, SIAM, Philadelphia.

Ikeda, K. and Murota, K. (2002), Imperfect Bifurcation in Structures and Materials — Engineering Use of
Group-Theoretic Bifurcation Theory, Springer-Verlag, Berlin.

Kanno, Y. and Ohsaki, M. (2002), “Second-order cone programming for shape analysis and form finding
of cable networks,” Proceedings of the Fifth International Conference on Space Structures, Surrey, UK,
Aug. 19-21, 567–576.

Kanno, Y and Ohsaki, M. (2003), “Minimum principle of complementary energy of cable networks by using
second-order cone programming,” Int. J. Solids Struct., to appear.

Kanno, Y., Ohsaki, M., and Ito, J. (2002), “Large-deformation and friction analysis of nonlinear elastic
cable networks by second-order cone programming,” Int. J. Numer. Meth. Engng., 55, 1079–1114.

7



Kawaguchi, M., Tatemichi, I., and Chen, P.S. (1999), “Optimum shapes of a cable dome structures,” Engng.
Struct., 21, 719–725.

Levy, R. and Spillers, W.R. (1998), “Practical methods of shape-finding for membranes and cable nets,”
J. Struct. Engng., ASCE, 124, 466–468.

Murakami, H. (2001), “Static and dynamic analyses of tensegrity structures. Part 1. Nonlinear equations
of motion,” Int. J. Solids Struct., 38, 3599–3613.

NUOPT User’s Manual Ver. 4, Mathematical Systems Inc. 1998.

Rockafellar, R.T. (1970), Convex Analysis, Princeton University Press.

Sultan, C., Corless, M., and Skelton, R.E. (2001), “The prestressability problem of tensegrity structures:
some analytical solutions,” Int. J. Solids Struct., 38, 5223–5252.

Pellegrino, S. (1992), “A class of tensegrity domes,” Int. J. Space Struct., 7, 127–142.

Schek, H.-J. (1974), “The force density method for form finding and computation of general networks,”
Comp. Meth. Appl. Mech. Engng., 3, 115–134.

Vilney, O. (1991), “Design of tensegric shells,” J. Struct. Engng., ASCE, 117, 1885–1896.

Yuan, X.F. and Dong, S.L. (2002), “Nonlinear analysis and optimum design of cable domes,” Engng. Struct.,
24, 965–977.

8


