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Abstract

Design of compliant mechanisms requires both giving a structure flexibility that produces

the kinematic performance and assuring stiffness to resist against structural failure. Presented

in this paper is a mixed-integer programming approach to design optimization of a compliant

mechanism realized as a frame structure consisting of standardized beam elements. In the

optimization problem, the local stress constraints are addressed directly and the displacement

of the output node is maximized. As an element-connectivity discretization, each member of

the ground structure is divided into three components, one long member and two short joint

elements, and the dimensions of cross-sections of joint elements are considered discrete design

variables. Accordingly, the optimal solution of the proposed formulation contains no hinge-like

region. The design optimization problem is formulated as a mixed-integer linear programming

problem and, hence, can be solved globally by using an existing algorithm such as a branch-

and-cut method. For solving large-scale problems we propose a heuristic local search, in which

mixed-integer linear programming subproblems are solved sequentially. Numerical examples

demonstrate that frame structures that can serve as compliant mechanisms are obtained by the

proposed method.

Keywords

Compliant mechanism; topology optimization; integer programming; element-connectivity

parameterization; stress constraint.

1 Introduction

Optimal design of compliant mechanisms has been one of substantial and promising subjects of

structural optimization. A compliant mechanism consists of single piece and, hence, does not

require the assembly process and lubrication. Also, compliant mechanisms have capability of elastic

recovery. Because of these properties, complaint mechanisms are considered advantageous over

conventional link mechanisms. Design optimization problems of compliant mechanisms have been

mostly attacked within the framework of continuum-based topology optimization; see, e.g., [5, 13,
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27, 33, 35, 45, 46, 55]. Particularly, recent attention has been attracted by, among others, but not

limited to, level-set methods for continuum optimization [30, 32, 53, 54]. In this paper we examine

applicability of an alternative framework, topology optimization of frame structures, in design of

compliant mechanisms. Particular attention is focused on usage of standardized beam sections and

direct treatment of the local stress constraints.

As is known well, design of compliant mechanisms inevitably involves two almost conflicting

requirements [13, 44]: retaining flexibility to produce the kinematic performance and stiffness to

ensure resistance against failure. To explore structures simultaneously fulfilling both requirements,

in this paper we attempt to maximize the output displacement of a compliant mechanism under the

local stress constraints. It is well known that the optimal solutions of continuum-based topology op-

timization approaches often have de facto hinges and, thence, stress concentration should be avoided

by carrying out post-processing procedure [35]. As a remedy, hinge-free optimization methods have

been studied extensively; e.g., methods imposing minimum length scale [36], adding two different

sets of artificial springs [37], using wavelet parameterization [59], introducing a density filter [47],

employing a quadratic energy function used in the filed of image processing [29], and performing

multi-objective optimization of two differently defined measures of compliance [63]. Making use of

topology optimization of frame structures might be able to be an alternative solution. Indeed, frame

models are sometimes used in optimal design of compliant mechanisms [28, 34, 38, 42, 43]. This

paper addresses local stress constraints and uses only standardized beam elements. The optimal

solution has no hinge and consists of structural elements with straight shapes and a limited number

of different cross-sections. This might be regarded as an advantage in manufacturability, as dis-

cussed below. Since the proposed method is based upon the ground structure method, a potential

disadvantage is that the solution space is rather limited compared with continuum-based topology

optimization.

This paper is inspired by the work of Jang et al. [22], in which design of compliant mechanisms

was treated as a topology optimization problem of frame structures with an element-connectivity

parameterization. Element-connectivity parameterization was originated by Yoon and Kim [58] as

a design parameterization for continuum topology optimization; see [26, 52, 56, 57, 60, 61] for its

developments. Jang et al. [22] applied the idea of the element-connectivity parameterization to

frame structures. Namely, each member of a conventional ground structure is divided into three

components: one center long beam, called a ground member, and two short beams, called joint

elements, connected to both ends of the ground member. Then design variables are assigned only to

the cross-sections of the joint elements; in essence, the bending stiffness of each joint element is con-

sidered a design variable. This parameterization is also employed in this paper. Small deformation

is assumed throughout the paper.

In Jang et al. [22], the width of each joint element is treated as a continuous design variable.

Then the maximization problem of the output displacement is solved with a nonlinear programming

approach. A small positive lower bound is given to the width of a joint element in order to prevent

numerical instability. After the optimization process, a joint element will be removed if its width

is smaller than a certain threshold value. The method proposed in this paper is different from the

one due to Jang et al. [22] in the following aspects.

(i) The cross-sections of both ground members and joint elements are standardized.
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(ii) The optimization problem is formulated as a mixed-integer linear programming (MILP)

problem. Therefore, algorithms with guaranteed convergence to a global optimal solution,

e.g., a branch-and-cut method, are available.

(iii) The local stress constraints are considered.

(iv) The method does not require to use a small positive lower bound for the design variables.

The static equilibrium equation is treated as constraints of the proposed MILP problem

and numerical instability does not occur even if such a lower bound is not introduced.

(v) Various combinatorial constraints can be treated directly. Examples are prohibition of

presence of mutually overlapping members and upper and lower bound constraints for the

number of members connected to each node.

Regarding (i), the ground members can be standardized straightforwardly with the element-connectivity

parameterization, because the cross-sections of ground members are fixed. Jang et al. [22] per-

formed optimization of continuous design variables, which leads to the optimal solution with non-

standardized joint elements. Compared with solutions of conventional continuum-based topology

optimization, compliant mechanisms with standardized beam elements might have an advantage

that they can be converted into products without resorting to post-processing of the computational

results. Also, some authors argued that, from a practical point of view, direct optimization of frame

structures is sometimes preferable to continuum-based topology optimization followed by interpre-

tation of the results as frame structures [15]. Concerning (ii), the MILP formulation proposed in

this paper can be viewed as a natural extension of the one for frame optimization in [25]. Simi-

lar MILP formulations for structural optimization were developed for continua with binary design

variables [48, 50], trusses with discrete member cross-sectional areas [24, 39], and tensegrity struc-

tures [23]. In a topology optimization process, the stress constraints mentioned in (iii) should be

imposed only on existing members. In other words, if the cross-sectional area of a member reaches

zero, then the stress constraint on this member should be removed from the optimization prob-

lem [2, 7, 41]. This constraint is fully addressed by employing the MILP approach, the fundamental

idea of which is originated from Stolpe and Svanberg [50]. Existing studies, with few exceptions,

consider the local stress constraints in design optimization of compliant mechanisms, although gen-

eral frameworks of treatment of stress constraints in continuum-based topology optimization were

studied in, e.g., [3, 4, 10, 17, 18, 20]. For compliant mechanism design, Saxena and Ananthasuresh

[44] employed the relaxation technique of the stress constraints, due to Cheng and Guo [7], and

solved the resulting optimization problem with a sequential quadratic programming. Lu and Kota

[28] and Zhou and Mandalad [62] used genetic algorithms to solve problems involving the local

stress constraints. An advantage of the MILP approach to these meta-heuristics and a nonlinear

programming approach is guaranteed convergence to a global optimal solution. When we consider

constraint (iii), as is known well, it is not accepted to use a small positive lower bound for the

design variables; see, e.g., [6]. Thus property (iv) becomes crucial. This issue is resolved, again,

by employing the MILP approach. Property (v) stems from the fact that the proposed formulation

uses a set of binary variables to represent structural design.

A potential disadvantage of the proposed method is that computational cost for solving an MILP

problem may possibly increase drastically as the number of design variables increases. As a remedy,

3



we propose a local search which is applicable to large-scale problems. The method uses two different

types of neighborhoods alternately. We solve the original MILP problem with adding a constraint

such that the solution should exist within a given neighborhood of the incumbent solution. This

additional constraint is written as some linear inequality constraints. Thus in the local search

we solve MILP subproblems sequentially. Similar local searches based upon MILP were proposed

for topology optimization of continua [49] and frame structures [25]. Use of integer programming

in a local search has received increasing attention as one of heuristics for various optimization

problems, including vehicle routing problems [9, 16], service network design problems [11], etc.

General frameworks of such methods can be found in, e.g., [8, 12, 19].

The paper is organized as follows. Section 2 defines the design optimization problem for gen-

erating a compliant mechanism based upon the element-connectivity parameterization of a frame

structure. Section 3 shows that this optimization problem can be reformulated as an MILP problem.

In section 4 we propose a local search heuristic for solving large-scale problems. Section 5 presents

numerical experiments. We conclude in section 6.

A few words regarding notation. All vectors are assumed to be column vectors. The (m + n)-

dimensional column vector (s⊤,x⊤)⊤ consisting of s ∈ Rm and x ∈ Rn is often written simply as

(s,x). The ℓ1-norm of vector x = (x1, . . . , xn)
⊤ ∈ Rn is defined by

∥x∥1 =
n∑

i=1

|xi|.

For set S, we use |S| to denote its cardinality. For instance, if S = {1, . . . ,m}, then |S| = m.

2 Design of compliant mechanisms

Section 2.1 summarizes the concept of an extended ground structure due to Jang et al. [22]. Sec-

tion 2.2 formulates a design optimization problem to generate a compliant mechanism that consists

of beam elements with varying cross-sections.

2.1 Extended ground structure

Like a conventional ground structure approach to topology optimization of planar frame structures,

we prepare a frame structure consisting of many candidate members and nodes with specified

locations. An example is shown in Figure 1(a).

Following Jang et al. [22], each member is divided into three components: a center long beam,

called a ground member , and two short beams, called joint elements, which are connected to both

ends of the ground beam. Figure 1(b) shows the extended ground structure that is obtained in this

manner. Let Ẽ and EJ denote the set of ground members and the set of joint elements, respectively.

For ground member e ∈ Ẽ , we use j1(e) and j2(e) to denote the two joint elements that are connected

to e. Ground members and joint elements are modeled as Timoshenko beam elements. As detailed

in section 2.2, the dimensions of cross-sections of joint elements are treated as design variables in

an optimization process.

We call a node connecting some joint elements a ground node. A node connecting a ground

member and a joint element is called an intermediate node. It is worth noting that both ends of a
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Figure 1: An example of problem setting. (a) A design domain; and (b) the corresponding ground

structure.

ground member are intermediate nodes. Let Ṽ denote the set of ground nodes. We use d to denote

the number of degrees of freedom of displacements of the extended ground structure. It should be

clear that d includes degrees of freedom of intermediate nodes.

Example 2.1. The ground structure shown in Figure 1(a) consists of three members connected

to four nodes. Node v1 is a fixed support. The corresponding extended ground structure is shown

in Figure 1(b). The set of ground nodes is Ṽ = {v1, v2, v3, v4}. Intermediate nodes are depicted

as filled circles. Since the extended ground structure has 9 free nodes, the number of degrees of

freedom of displacements is d = 27. The set of ground members is

Ẽ = {e1, e2, e3}.

Each ground member is connected to two joint elements as

j1(e1) = e4, j2(e1) = e5,

j1(e2) = e6, j2(e2) = e7,

j1(e3) = e8, j2(e3) = e9.

The set of all joint elements is

EJ = {e4, e5, e6, e7, e8, e9}.

The cross-sections of these 6 joint elements are to be designed in the optimization process. ■

2.2 Design optimization problem

In the course of optimization, only dimensions of the cross-sections of the joint elements are con-

sidered design variables. Shapes of the ground members are fixed. Topology of the structure can

change if some of joint elements vanish as a result of optimization. This is a key idea of the so-called

element-connectivity parameterization method [22, 58].

In this paper, design variables are considered discrete. That is, section of each beam is chosen

from a set of some given candidates. Selection of the beam sections is handled directly within

the framework of integer programming. This is one of major differences from the method of [22],
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Figure 2: Problem setting for design of a compliant inverter. The ground structure, input force,

output displacement, and output spring.

in which the width of each beam is treated as a continuous design variable and the optimization

problem is attacked with a nonlinear programming approach using the sensitivity analysis.

Figure 2 shows an example of ground structure, with which we attempt to design a compliant

force inverter. Ground nodes are depicted as filled squares, while intermediate nodes are omitted

in Figure 2. Like existing studies on optimal design of compliant mechanisms, we consider the

following design problem. The left node in the middle row, called the input node, of the structure

is subjected to a specified (rightward) external force, denoted by fin. The right node in the middle

row, called the output node, is connected to an additional spring, called the output spring . The top

and bottom leftmost nodes are fixed supports. Then we attempt to find the set of beam sections of

joint elements that maximizes the horizontal (leftward) displacement of the output node, denoted

by uout.

For simplicity, we assume that all the ground members have the same section. In the optimization

process, we determine whether joint element j ∈ EJ has

(i) the same section as the ground member;

(ii) the section with the predetermined small bending stiffness; or

(iii) no stiffness (i.e., joint element j is removed).

Let Jstiff , Jflex, and N denote the sets of joint elements in phases (i), (ii), and (iii), respectively.

Figure 3 illustrates these three phases for joint element j1(e). As detailed in section 3.2, if j1(e) ∈ N ,

then ground member e can be considered to be removed. A joint element in Jstiff is considered to

form a usual joint of a frame structure. In contrast, the one in Jflex gives rotational flexibility to

the end of a ground member and serves as an elastic hinge. Removed joint elements, i.e., the ones

belonging to N , lead to change of structural topology.

In the setting above, the design problem can be regarded as a problem finding a partition

EJ = Jstiff ∪ Jflex ∪N (1)

of EJ, where Jstiff , Jflex, and N are disjoint sets. For joint element j ∈ EJ, let aj and Ij denote the
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Figure 3: Three phases of a joint element. (a) j1(e) ∈ Jstiff ; (b) j1(e) ∈ Jstiff ; and (c) j1(e) ∈ N .

member cross-sectional area and moment of inertia, respectively, which are given by

(aj , Ij) =


(ās, Īs) if j ∈ Jstiff ,

(āf , Ī f) if j ∈ Jflex,

(0, 0) if j ∈ N .

(2)

Here, ās, āf , Īs, and Ī f are predetermined constants satisfying ās ≥ āf > 0 and Īs ≫ Ī f > 0. For

notational convenience, we use vectors a = (aj | j ∈ EJ) and I = (Ij | j ∈ EJ).
Let u ∈ Rd denote the vector of nodal displacements of the extended ground structure. We use

f ∈ Rd to denote the external force vector, where its component corresponding to the input force

is equal to fin and all the other components are 0. Assume small deformation. The displacement

vector at the equilibrium state subjected to the input force is given by the equilibrium equation,

(K(a, I) +Kout)u = f . (3)

Here, K(a, I) ∈ Rd×d and Kout ∈ Rd×d are the stiffness matrices of the extended ground structure

and the output spring, respectively. Note that Kout is a constant matrix, because the elongation

stiffness of the output spring is fixed. The explicit form of K(a, I) appears in section 3.1.

Noting that external forces are not applied to the intermediate nodes, we formulate the stress

constraints only for joint elements as follows. Let v1 and v2 denote the two nodes of joint element

j, i.e., j = (v1, v2) ∈ EJ. Suppose that joint element j has the same section as the ground members,

i.e., j ∈ Jstiff . Let qsy and ms
y denote the specified allowable (absolute) values of the axial force and

the end moment, respectively. Define φs
j : Rd → R by

φs
j(u) =

|qsj(u)|
qsy

+
max{|ms

j,v1
(u)|, |ms

j,v2
(u)|}

ms
y

− 1, (4)

where qsj(u) is the axial force and ms
j,v1

(u) and ms
j,v2

(u) are the two end moments induced by

displacement u. Then the stress constraint for joint element j is given by φs
j(u) ≤ 0. Similarly, if

joint element j has small bending stiffness, i.e., j ∈ Jstiff , then the stress constraint is written as

φf
j(u) ≤ 0 with function φf

j : Rd → R defined by

φf
j(u) =

|qfj(u)|
qfy

+
max{|mf

j,v1
(u)|, |mf

j,v2
(u)|}

mf
y

− 1. (5)

Under all the constraints above, the design problem that we solve is to find a partition {Jstiff ,Jflex,N}
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Figure 4: Local coordinate system for a joint element.

of EJ that maximizes uout. This optimization problem is formally written as

max uout (6a)

s. t. (K(a, I) +Kout)u = f , (6b)

φs
j(u) ≤ 0, ∀j ∈ Jstiff , (6c)

φf
j(u) ≤ 0, ∀j ∈ Jflex, (6d)

(aj , Ij) =


(ās, Īs) if j ∈ Jstiff ,

(āf , Ī f) if j ∈ Jflex,

(0, 0) if j ̸∈ Jstiff ∪ Jflex,

∀j ∈ EJ, (6e)

where Jstiff and Jflex are disjoint subsets of EJ. It should be clear here that variable uout is a

component of vector u.

Remark 2.2. In the preceding study of Jang et al. [22], the upper bound constraint for the structural

volume is (approximately) considered. This constraint is often considered also in continuum opti-

mization approaches to design of compliant mechanisms; see, e.g., [33, 35, 45, 46]. Contrary to the

compliance minimization, however, increase of the available structural volume does not necessarily

imply improvement of performance of a compliant mechanism, as mentioned in [22]. For this rea-

son, the volume constraint is not incorporated into problem (6). If necessary, however, the method

developed in this paper can deal with the volume constraint easily; see Remark 3.1 in section 3.4. ■

3 Mixed-integer programming approach

Section 2 has defined a design optimization problem of a compliant mechanism as frame optimization

with an extended ground structure. This section shows that the optimization problem, (6), can be

reduced to an MILP problem. This MILP formulation can be viewed as a natural extension of the

one due to Kureta and Kanno [25], which deals with frame optimization with a conventional ground

structure. In the following, some details of the reformulation techniques in [25] are modified so as

to match particular features of the formulation with an extended ground structure.

3.1 Equilibrium equations with element-connectivity formulation

This section develops an explicit formulation of the equilibrium equation, (6b), in conjunction with

selection of beam sections, (6e). A key to this reformulation is diagonalization of the stiffness matrix,

which was used also in [25].

For joint element j ∈ EJ, let v1 and v2 denote the two end nodes, i.e., j = (v1, v2). We use

ûj = (ûv1x , ûv1y , θ̂v1 , ûv2x , ûv2y , θ̂v2)⊤ ∈ R6 to denote the element displacement vector defined in the
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local coordinate system as illustrated in Figure 4. We may decompose ûj into three components

of rigid-body motion and three components of deformation. We use cj,1, cj,2, cj,3 ∈ R to denote

the generalized strains that describe this deformation. The compatibility relations between cj,t

(t = 1, 2, 3) and ûj can be written as

cj,t = b̂
⊤
j,tûj , t = 1, 2, 3. (7)

Constant vectors b̂j,1, b̂j,2, b̂j,3 ∈ R6 are defined by

b̂j,1 =



−1
0

0

1

0

0


, b̂j,2 =



0

2/lj

1

0

−2/lj
1


, b̂j,3 =



0

0

−1
0

0

1


, (8)

where lj is the length of joint element j. The displacement vector of the whole extended ground

structure, u ∈ Rd, is defined with respect to the global coordinate system. Transformation of u to

ûj is written as

ûj = Tju, (9)

where Tj ∈ R6×d is a constant matrix. Define bj,1, bj,2, bj,3 ∈ Rd by

bj,t = T⊤
j b̂j,t, t = 1, 2, 3. (10)

From (7), (9), and (10), the compatibility relations between cj,t (t = 1, 2, 3) and u are given by

cj,t = b⊤j,tu, t = 1, 2, 3. (11)

Similarly, for ground member e ∈ Ẽ , the compatibility relations are written as

c̃e,t = b̃
⊤
e,tu, t = 1, 2, 3, (12)

where c̃e,1, c̃e,2, c̃e,3 ∈ R are the generalized strains and b̃e,1, b̃e,2, b̃e,3 ∈ Rd are constant vectors.

In accordance with (11) and (12), the force-balance equation is written as

∑
j∈EJ

3∑
t=1

sj,tbj,t +
∑
e∈Ẽ

3∑
t=1

s̃e,tb̃e,t +Koutu = f . (13)

Here, for joint element j ∈ EJ, variables sj,1, sj,2, sj,3 ∈ R are the generalized stresses that are

work-conjugate to cj,1, cj,2, and cj,3. Similarly, s̃e,1, s̃e,2, s̃e,3 ∈ R are the generalized stresses of

ground member e ∈ Ẽ .
The constitutive laws are written as

sj,t = kj,tcj,t, t = 1, 2, 3; ∀e ∈ EJ, (14)

s̃e,t = k̃e,tc̃e,t, t = 1, 2, 3; ∀j ∈ Ẽ . (15)

9



The member stiffnesses, kj,t (t = 1, 2, 3), of joint element j depends on its phase as

kj,t =


ksj,t if j ∈ Jstiff ,

kfj,t if j ∈ Jflex,

0 if j ∈ N ,

t = 1, 2, 3; ∀e ∈ EJ, (16)

where ksj,t and kfj,t (t = 1, 2, 3) are constants defined by

ksj,1 =
Eās

lj
, ksj,2 = lj

( l2j
3EĪs

+
4

κGās

)−1
, ksj,3 =

EĪs

lj
, (17a)

kfj,1 =
Eāf

lj
, kfj,2 = lj

( l2j
3EĪ f

+
4

κGāf

)−1
, kfj,3 =

EĪ f

lj
. (17b)

Here, we adopt the MacNeal element [31, 40] in the Timoshenko beam theory, κ is the shear correc-

tion factor, and E and G are Young’s modulus and the shear modulus of the material, respectively.

Also, k̃e,1, k̃e,2, k̃e,3 ∈ R (∀e ∈ Ẽ) in (15) are constants which are defined for ground member e in a

similar manner.

The upshot is that the equilibrium equation (6b), in conjunction with (6e), is equivalently

rewritten as (11), (12), (13), (14), (15), and (16).

3.2 Constitutive laws with binary variables

Among the equations presented in section 3.1, (14) is a system of nonlinear constraints because kj,t

is a variable determined by (16). This section rewrites these nonlinear constraints as some linear

constraints by making use of some binary variables.

In the optimization process, section of each joint element is treated as a design variable and the

set of joint elements is partitioned as (1). We begin by introducing binary variables to express this

partition. Specifically, for joint element j ∈ EJ, we prepare two 0-1 variables,

(xj , yj) ∈ {0, 1}2, (18)

that satisfy

xj + yj ≤ 1. (19)

The partition of the set of joint elements in (1) can be expressed as

(xj , yj) = (1, 0) ⇔ j ∈ Jstiff , (20a)

(xj , yj) = (0, 1) ⇔ j ∈ Jflex, (20b)

(xj , yj) = (0, 0) ⇔ j ∈ N . (20c)

The constitutive laws of joint elements are given by (14) and (16). Variable kj,t can be eliminated

as follows. For each t = 1, 2, 3 and j ∈ EJ, we decompose the generalized stress, sj,t, additively into

two parts as

sj,t = ssj,t + sfj,t, (21)

10



(a) (b) (c)

Figure 5: Three equivalent treatments of member e satisfying (xj1(e), yj1(e)) = (0, 0) and

(xj2(e), yj2(e)) = (1, 0). (a) Joint element j1(e) has a vanished cross-section; (b) the ground member

and the two joint elements have vanished cross-sections; and (c) the ground member has a vanished

cross-section, while the two joint elements undergo no deformations.

where ssj,t and sfj,t are defined by

ssj,t =

{
ksj,tcj,t if j ∈ Jstiff ,

0 otherwise,
sfj,t =

{
kfj,tcj,t if j ∈ Jflex,

0 otherwise.
(22)

Then sj,t satisfies (14) and (16) if and only if sj,t, s
s
j,t, and sfj,t satisfy (21) and (22). With reference

to (20), we can rewrite (22) equivalently by using the binary variables as

ssj,t = ksj,tc
s
j,t, sfj,t = kfj,tc

f
j,t, (23)

csj,t =

{
cj,t if xj = 1,

0 if xj = 0,
cfj,t =

{
cj,t if yj = 1,

0 if yj = 0,
(24)

where csj,t and cfj,t are additional variables.

We next introduce the notion of existence/nonexistence of a ground member. Originally, in [22],

only the dimension (specifically, the width) of cross-section of each joint element is varied during

the optimization process and no design variables are assigned to ground members. In contrast, in

our approach it is more convenient to make use of design variables that explicitly represent the

existence of ground members. For ground member e ∈ Ẽ , let ze ∈ {0, 1} be a variable such that

ze = 1 means the presence of member e and ze = 0 means the absence of member e. Recall that

we use j1(e) and j2(e) to denote the joint elements connected to ground member e. Suppose that

at least one of the two joint elements has no stiffness. Figure 5(a) shows an example of j1(e) ∈ N
and j2(e) ∈ Jstiff , i.e., j1(e) vanishes and j2(e) ∈ Jstiff has the same section as the ground members.

Then the generalized stresses of j1(e) are equal to zero. Since ground member e is connected only to

j1(e) and j2(e) through two intermediate nodes, the force-balance equation, (13), requires that the

Table 1: Member phases and integer variables.

(xj1(e), yj1(e)) (xj2(e), yj2(e)) ze

Case 1 (1, 0) (1, 0) 1

Case 2 (0, 1) (1, 0) 1

Case 3 (1, 0) (0, 1) 1

Case 4 (0, 1) (0, 1) 1

Case 5 (0, 0) (0, 0) 0
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generalized stresses of e and j2(e) are also equal to zero. This means that if j1(e) vanishes, then we

can remove e and j2(e) without changing the equilibrium state of the whole structure. That is, the

situation illustrated in Figure 5(a) can be replaced by the one in Figure 5(b). In this situation we

may suppose that the displacements of the two intermediate nodes are allowed to take any values,

in the sense that the displacements of the ground nodes remain unchanged. Thus, if at least one of

j1(e), j2(e), and e vanishes, then all of these three members can be considered removed. In other

words, we may require that ze = 1 implies (xj1(e), yj1(e)) ̸= (0, 0) and (xj2(e), yj2(e)) ̸= (0, 0), and

vice versa. This condition can be written as

ze = xj1(e) + yj1(e) = xj2(e) + yj2(e), ∀e ∈ Ẽ . (25)

As a consequence, a ground member and its two adjacent joint elements can take one of the five

cases listed in Table 1.

Consider the situation in which ground member e ∈ Ẽ vanishes, i.e., ze = 0. The generalized

stresses satisfy s̃e,t = 0 (t = 1, 2, 3). Then (15) implies c̃e,t = 0 (t = 1, 2, 3). From this observation

it follows that we can replace (12) by

c̃e,t =

b̃
⊤
e,tu if ze = 1,

0 if ze = 0,
(26)

without changing the solution.1 Furthermore, from (25) we see that ze = 0 holds only if the two

adjacent joint elements vanish. Since ground member e is connected only to these two joint elements,

the force-balance equation, (13), requires s̃e,t = 0 (and, thence, c̃e,t = 0 from (15)) when the two

adjacent joint elements vanish. In short, if ze = 0, then c̃e,t = 0 holds from the force-balance

equation. Hence, we can replace (26) by

|c̃e,t − b̃
⊤
e,tu| ≤M(1− ze), (27)

where M ≫ 0 is a sufficiently large constant.

We further analyze the constitutive law of joint element j ∈ EJ. Recall that the constitutive

law of the joint element has been given by (21), (23), and (24). When joint element j vanishes,

i.e., (xj , yj) = (0, 0), we suppose that the adjacent ground member also vanishes, as illustrated

in Figure 5(b). In this situation, suppose that the two joint elements are required to undergo no

deformations, as illustrated in Figure 5(c). Even if under this artificial constraint, the equilibrium

state of the whole structure does not change; more precisely, the displacements of the ground nodes

at the equilibrium state remain unchanged. From this observation it follows that the condition

cj,t = 0 if (xj , yj) = (0, 0) (28)

can be added to the constitutive law of the joint element. Conditions (24) and (28) can be rewritten

equivalently by using the binary variables as

|csj,t| ≤Mxj , (29a)

|cfj,t| ≤Myj , (29b)

csj,t + cfj,t = cj,t, (29c)

1Here, ze = 0 does not imply b̃
⊤
e,tu = 0.

12



where M ≫ 0 is a sufficiently large constant. In (29), variable cj,t can be eliminated by using (11).

By summing up the results above, we can see that the constitutive law of a joint element is

rewritten as (21), (23), and (29), where the binary variables satisfy (18), (19), and (25). Also, the

constitutive law, in conjunction with the compatibility relation, of a ground member is written as

(15) and (27).

3.3 On stress constraints

In this section we show that (29a) and (29b) can be replaced by local stress constraints.

Recall that variables csj,t and cfj,t in (29) have been related to ssj,t and sfj,t through (23). Since

ksj,t and kfj,t are positive constants and M is sufficiently large, (29a) and (29b) (for all t and j) can

be replaced by

|ssj,t| ≤Mxj , t = 1, 2, 3; ∀j ∈ EJ, (30)

|sfj,t| ≤Myj , t = 1, 2, 3; ∀j ∈ EJ. (31)

On the other hand, for joint elements belonging to Jstiff , the stress constraints have been given

by (6c) in conjunction with (4). Let σ̄ denote the specified upper bound for stress. We use Z̄s to

denote the elastic section modulus of the cross-section used for j ∈ Jstiff . Then qsy and ms
y in (4)

are written as qsy = σ̄ās and ms
y = σ̄Z̄s. Hence, the stress constraints for j ∈ Jstiff , (6c), can be

rewritten as

|qsj(u)|
ās

+
max{|ms

j,v1
(u)|, |ms

j,v2
(u)|}

Z̄s
≤ σ̄, ∀j ∈ Jstiff . (32)

From the definition of bj,t, i.e., (8) and (10), we obtain

ssj,1 = qsj(u), ssj,2 =
ms

j,v1
(u) +ms

j,v2
(u)

2
, ssj,3 =

−ms
j,v1

(u) +ms
j,v2

(u)

2
.

Therefore, the left-hand side of (32) can be reduced to

|qsj(u)|
ās

+
max{|ms

j,v1
(u)|, |ms

j,v2
(u)|}

Z̄s

=
|qsj(u)|
ās

+
1

2

|ms
j,v1

(u) +ms
j,v2

(u)|
Z̄s

+
1

2

|ms
j,v1

(u)−ms
j,v2

(u)|
Z̄s

=
|ssj,1|
ās

+
|ssj,2|
Z̄s

+
|ssj,3|
Z̄s

.

Consequently, (32) is equivalently rewritten as

|ssj,1|
ās

+
|ssj,2|
Z̄s

+
|ssj,3|
Z̄s
≤ σ̄, ∀j ∈ Jstiff . (33)

Similarly, the stress constraint for joint elements belonging to Jflex, i.e., (6d) with (5), can be

rewritten equivalently as

|sfj,1|
āf

+
|sfj,2|
Z̄ f

+
|sfj,3|
Z̄ f
≤ σ̄, ∀j ∈ Jflex. (34)

Finally, we can see that (30) and (33) are equivalent to

|ssj,1|
ās

+
|ssj,2|
Z̄s

+
|ssj,3|
Z̄s
≤ σ̄xj , ∀j ∈ EJ. (35)
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Also, (31) and (34) are equivalent to

|sfj,1|
āf

+
|sfj,2|
Z̄f

+
|sfj,3|
Z̄ f
≤ σ̄yj , ∀j ∈ EJ. (36)

In this way, constraints (29a) and (29b) can be replaced by constraints (35) and (36).

3.4 Mixed-integer linear programming formulation

By summing up the results obtained in the preceding sections, we are now in position to present an

MILP problem that we solve. The constraints of problem (6) can be expressed as (11), (13), (15),

(19), (21), (23), (25), (27), (29c), (35), and (36). Therefore, problem (6) is reduced to the following

MILP problem:

max uout (37a)

s. t.
∑
e∈Ẽ

3∑
t=1

s̃e,tb̃e,t +
∑
j∈EJ

3∑
t=1

(ssj,t + sfj,t)bj,t +Koutu = f , (37b)

|ssj,1|
ās

+
|ssj,2|
Z̄s

+
|ssj,3|
Z̄s
≤ σ̄xj , ∀j ∈ EJ, (37c)

|sfj,1|
āf

+
|sfj,2|
Z̄f

+
|sfj,3|
Z̄ f
≤ σ̄yj , ∀j ∈ EJ, (37d)

ssj,t = ksj,tc
s
j,t, sfj,t = kfj,tc

f
j,t, t = 1, 2, 3; ∀j ∈ EJ, (37e)

s̃e,t = k̃e,tc̃e,t t = 1, 2, 3; ∀e ∈ Ẽ , (37f)

csj,t + cfj,t = b⊤j,tu, t = 1, 2, 3; ∀j ∈ EJ, (37g)

|c̃e,t − b̃
⊤
e,tu| ≤M(1− ze), t = 1, 2, 3; ∀e ∈ Ẽ , (37h)

ze = xj1(e) + yj1(e) = xj2(e) + yj2(e), ∀e ∈ Ẽ , (37i)

xj + yj ≤ 1, ∀j ∈ EJ, (37j)

xj , yj ∈ {0, 1}, ∀j ∈ EJ, (37k)

ze ∈ {0, 1}, ∀e ∈ Ẽ . (37l)

In problem (37), continuous variables are ssj,t, s
f
j,t, c

s
j,t, c

f
j,t (for all j and t), s̃e,t, c̃e,t (for all e and

t), and u. Binary variables are xj , yj (for all j) and ze (for all e). Note that constraint (37l) is

redundant, because (37i), (37j), and (37k) imply (37l). All the constraints other than (37k) and

(37l) are linear constraints. Thus problem (37) is an MILP problem and, hence, can be solved

globally with an existing algorithm, e.g., a branch-and-cut method. Several software packages, e.g.,

SCIP [1] and CPLEX [21], are available for this purpose.

The remainder of the section is devoted to exploring some additional constraints that can be

handled within the framework of MILP.

We begin with the constraints that prohibit presence of mutually intersecting members lying

in the same plane. Let P̃cross denote the set of pairs of ground members that mutually intersect

in the ground structure. That is, we write (e, e′) ∈ P̃cross if member e ∈ Ẽ and member e′ ∈ Ẽ
intersect. Recall that ze = 1 means presence of member e, while ze = 0 means absence of member

e. Therefore, ze and ze′ cannot become 1 simultaneously. This condition can be written as

ze + ze′ ≤ 1, ∀(e, e′) ∈ P̃cross. (38)

14



1ev

2e3e

3
j

1
j

2
j

Figure 6: The members connected to node v ∈ Ṽ.

We next consider the constraint imposing symmetry in configuration of the compliant mecha-

nism. Suppose, for instance, the problem setting for generating a compliant converter; see Figure 2

in section 2.1. The horizontal external force is applied at the input node and the horizontal dis-

placement of the output node is maximized. To guarantee that the output node has no vertical

displacement, it might be natural to confine the feasible set to the set of structures that are symmet-

ric with respect to the horizontal axis. Such a constraint can be formulated in terms of xj ’s and yj ’s

as follows. Let PJ
sym denote the set of pairs of joint elements that are located at symmetric positions.

That is, we write (j, j′) ∈ PJ
sym if joint element j ∈ EJ is swapped with joint element j′ ∈ EJ by the

horizontal reflection. Then these two joint elements should have the same cross-section, which can

be written as

(xj , yj) = (xj′ , yj′), ∀(j, j′) ∈ PJ
sym. (39)

The next constraint aims to remove unnecessary members. Let v ∈ Ṽ be a ground node that is

not either the input node or the output node. Suppose that only one member, denoted ē ∈ Ẽ , is
connected to node v. The specified external force is applied at the input node and no external force

is applied at node v. From the balance of forces at node v it follows that member ē has no internal

stress at the equilibrium state. Therefore, the equilibrium configuration of the whole structure (and

hence the objective value also) undergoes no change if member ē is removed. In other words, such

a member is unnecessary. This motivates us to consider the constraint such that node v has either

(i) at least two members; or (ii) no members. This constraint can be formulated in terms of ze’s

as follows. Let Ẽ(v) ⊆ Ẽ denote the set of the ground members that are connected to node v ∈ Ṽ.
For instance, Ẽ(v) = {e1, e2, e3} for the example shown in Figure 6. Then the number of existing

members connecting to node v is given by ∑
e′∈Ẽ(v)

ze′ .

From this observation, the constraint under consideration can be written as

2ze ≤
∑

e′∈Ẽ(v)

ze′ , ∀e ∈ Ẽ(v) (40)

for all v ∈ Ṽ except for the input and output nodes. Indeed, if no member remains, then ze = 0

(∀e ∈ Ẽ(v)) and (40) is satisfied. On the other hand, suppose that there exist some remained

members around node v. Let one of them denote ê ∈ Ẽ(v). Then zê = 1, and thence (40) reads

2zê = 2 ≤
∑

e′∈Ẽ(v) ze′ , which means that there remain at least two members around node v.
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The final one is an optional constraint, that might be, however, somewhat meaningful from

a viewpoint of manufacturability or robustness of compliant mechanisms. Namely, we can limit

the number of elastic hinges around each node. More precisely, we can consider the upper bound

constraint for the number of flexible joint elements, i.e., joint elements belonging Jflex, that are

connected to each node. Concentration of many flexible joint elements at one ground node may

possibly cause difficulty of manufacture, yield instability around the node, and/or result in less

immunity against failure. Suppose, for instance, that the upper bound under consideration is one.

Let EJ(v) ⊆ EJ denote the set of the joint elements that are connected to node v ∈ Ṽ. For instance,
in the case of Figure 6 we have that EJ(v) = {j1, j2, j3}. Then the constraint under consideration

can be written as ∑
j∈EJ(v)

yj ≤ 1, ∀v ∈ Ṽ, (41)

because yj = 1 means j ∈ Jflex.
All these additional constraints, i.e., (38), (39), (40), and (41), are linear constraints. Hence,

problem (37) with these additional constraints can still be handled within the framework of MILP.

Thus various combinatorial constraints are dealt with easily, which might be one of advantages of

the MILP approach.

Remark 3.1. In the presented method, the upper bound constraint for the structural volume can

also be dealt with. To see this, we first consider the volume of a ground member. Recall that ground

member e ∈ Ẽ has cross-sectional area ās and its existence is expressed by ze ∈ {0, 1}. Therefore,

the volume of ground member e is given by

zeā
s l̃e,

where l̃e is the member length. We next consider a joint element. By using (2) and (20), we see

that the cross-sectional area of joint element j ∈ EJ can be represented as xj ā
s + yj ā

f . Hence, the

volume is written as

(xj ā
s + yj ā

f)lj .

By summing up these observations, we see that the volume constraint can be formulated as∑
e∈Ẽ

zeā
s l̃e +

∑
e∈EJ

(xj ā
s + yj ā

f)lj ≤ V̄ , (42)

where V̄ is the specified upper bound for the structural volume. Thus the volume constraint can be

represented as a linear inequality constraint. In our numerical experiments, however, constraint (42)

is not added to problem (37). This is because, contrary to the compliance optimization, increase of

V̄ does not necessarily imply improvement of performance of a compliant mechanism. ■

4 Local search

In section 3, we have proposed to solve an MILP problem, (37), by using an existing algorithm with

guaranteed global optimality. In practice, however, this approach might be applicable only when

the number of design variables is relatively small.
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This section presents a local search that can be applied to large-scale problems. This method

solves a sequence of MILP subproblems, each of which finds the best one among feasible solutions

in a specified neighborhood of the incumbent solution. Such sequential MILP methods were applied

to topology optimization of continua [49] and frame structures [25]. An initial solution for this

optimization process may be obtained by solving a problem for a coarse ground structure with a

global optimization approach. Then we translate the obtained optimal solution onto a finer ground

structure to obtain an initial solution for the local search. This procedure may be repeated until

the current ground structure becomes sufficiently fine. Such hierarchical optimization methods for

topology optimization were initiated in [49, 51]. Unlike the methods cited above, the local search

proposed in the following uses two different types of neighborhoods alternately. That is, one is

fixing structural topology and allowing only variation of sizes of structural elements, while the

other allowing change in topology but restricting the amount of variation in solutions.

Recall that, in our formulation, the structural design is essentially determined only by (xj , yj) ∈
{0, 1}2 (∀j ∈ EJ); see, e.g., (20) in section 3.2. Therefore, in the following we use (x,y) to represent

a solution.

Let (x∗,y∗) denote a current solution. For instance, at the first iteration of the sequential search,

(x∗,y∗) is the initial solution translated from the optimal solution for the coarser extended ground

structure. We define two types of neighborhoods of (x∗,y∗). First, define set N̂ (x∗,y∗) ⊆ R2|EJ| by

N̂ (x∗,y∗) = {(x,y) | x+ y = x∗ + y∗, (xj , yj) ∈ {0, 1}2 (∀j ∈ EJ)}.

Second, for a given radius r > 0, define set Ň (x∗,y∗; r) ⊆ R2|EJ| by

Ň (x∗,y∗; r) = {(x,y) | ∥x− x∗∥1 + ∥y − y∗∥1 ≤ r, (xj , yj) ∈ {0, 1}2 (∀j ∈ EJ)}.

It is worth noting that N̂ (x∗,y∗) is the set of solutions that have the same topology as (x∗,y∗).

Within this neighborhood, joint element j ∈ Jstiff at the current solution is allowed to change as

j ∈ Jflex, and joint element j′ ∈ Jflex is allowed to change as j′ ∈ Jstiff . In contrast, Ň (x∗,y∗; r)

allows addition and removal of joint elements. Instead, the number of different components between

(x,y) and (x∗,y∗) is restricted up to r. We propose a local search that uses these two different

neighborhoods alternately.

The sequential MILP method based upon the local search using these two neighborhoods is

described as follows.

Algorithm 4.1.

Step 0 Translate the solution for the coarser extended ground structure to the current extended

ground structure. Let (x̌(0), y̌(0)) and f̂ (0) denote the translated solution and the objec-

tive value, respectively. Choose positive integer r. Set k = 0.

Step 1 Solve the MILP problem with the constraint (x,y) ∈ N̂ (x̌(k), y̌(k)). Let (x̂(k+1), ŷ(k+1))

and f̂ (k+1) denote the optimal solution and the optimal value, respectively.

Step 2 If f̂ (k) < f̂ (k+1), then go to step 4. Otherwise, go to step 3.

Step 3 Check the stresses of the existing members. If all the members have nonzero stresses, then

declare (x̂(k+1), ŷ(k+1)) as the solution and terminate. Otherwise, remove the members
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that have no stresses, let anew (x̂(k+1), ŷ(k+1)) denote the obtained solution, and go to

step 4.

Step 4 Solve the MILP problem with the constraint (x,y) ∈ Ň (x̂(k+1), ŷ(k+1); r). Let (x̌(k+1), y̌(k+1))

denote the optimal solution. Update k ← k + 1 and go to step 1.

■

Remark 4.2. At step 1 of Algorithm 4.1, the feasible set is restricted within N̂ (x̌(k), y̌(k)). In view

of (37i), define že (∀e ∈ Ẽ) by

že = x̌
(k)
j1(e)

+ y̌
(k)
j1(e)

.

Then this restriction is equivalent to adding the constraints

ze = že, ∀e ∈ Ẽ .

That is, variables ze’s are fixed. Define supp(ž) ⊆ Ẽ by

supp(ž) = {e ∈ Ẽ | že = 1}.

Then constraint (37h) can be replaced by

|c̃e − b̃
⊤
e,tu| ≤ 0, ∀e ∈ supp(ž).

As a consequence, at step 1 we solve an MILP problem which does not include big constant M . It

is known that presence of such a large constant, called “big-M,” in an MILP problem often slows

down the solution process, because it weakens relaxation problems of the MILP problem. The

subproblem at step 1 does not have this weak point. Therefore, it is expected that this problem

can be solved with quite small computational cost, although, unlike the subproblem at step 4,

no limitation is imposed on the amount of variation from the incumbent solution. Indeed, this

expectation is supported by the numerical results in section 5.2.2. The subproblem solved at step 4

uses neighborhood Ň (x∗,y∗; r) and involves big-M. There exists trade-off relation that the local

search using only this subproblem might possibly converge to a poor local optimal when r is small,

while computational cost often increases drastically as r increases. In view of these issues this

paper uses two neighborhoods alternately, rather than increasing r at step 4, to achieve diversity

of the solutions explored within one iteration of the local search and to retain relatively small

computational cost. ■

Remark 4.3. At step 2 of Algorithm 4.1, if f̂ (k+1) does not satisfy f̂ (k) < f̂ (k+1), then f̂ (k) = f̂ (k+1)

holds. ■

Remark 4.4. At step 3 of Algorithm 4.1, we remove, if any, the members that have zero stresses

at the equilibrium state subjected to the input force. This procedure may possibly enlarge the

solution space explored by the algorithm, because the solution obtained at step 3 does no longer

belong to N̂ (x̌(k), y̌(k)). In our numerical experiments, such a case actually appears; see example

(V) in section 5.2.2. ■

18



Remark 4.5. At step 4 of Algorithm 4.1, the feasible set is restricted within Ň (x̂(k+1), ŷ(k+1); r).

This constraint can be expressed by a linear inequality. Indeed, the constraint is equivalently

rewritten as∑
j∈supp(x̂(k+1))

(1− xj) +
∑

j ̸∈supp(x̂(k+1))

xj +
∑

j∈supp(ŷ(k+1))

(1− yj) +
∑

j ̸∈supp(ŷ(k+1))

yj ≤ r.

Therefore, the problem solved at step 4 is an MILP problem. ■

5 Numerical experiments

Compliant mechanisms with standardized sections were generated by solving problem (37) with the

additional constraints, (38), (39), (40), and (41). Computation was carried out on two 2.66GHz

6-Core Intel Xeon Westmere processors with 64GB RAM. MILP problems were solved by using

CPLEX ver. 12.2 [21], where the data of the problems were prepared in the CPLEX LP file format.

The integrality tolerance in CPLEX is set to 0 and the feasibility tolerance in the simplex method

is set to 10−8. The other parameters of CPLEX are set to the default values.

As for material parameters, Young’s modulus and Poisson’s ratio are E = 70GPa and ν = 0.4,

respectively. The shear modulus is thence G = E/2(1 + ν) = 25MPa. The upper bound for stress

in constraints (37c) and (37d) is σ̄ = 3.4GPa.

Each ground member has a rectangular cross-section with width w = 5mm and thickness t =

1mm. The joint elements belonging to Jstiff have the same section as a ground member. For the

flexible joint elements, i.e., the ones belonging to Jflex, the moment of inertia and the elastic section

modulus are 1/25 and 1/5 of the values of the ground members. respectively. The shear correction

factor in the Timishenko beam theory is κ = 5/6. The input force applied at the input node is

fin = 100N. The elongation stiffness of the output spring is 28 kN/m.

5.1 Global optimization with single mixed-integer programming

This section collects relatively small examples. For these examples, the global optimal solution of

the proposed MILP problem can be found with small computational effort.

5.1.1 Example (I)

Consider an inverter problem shown in Figure 2 in section 2.2, where L = 25mm. The extended

ground structure consists of Ẽ = 28 ground members and |EJ| = 56 joint elements. The ground

nodes are depicted as filled squares in Figure 2. The length of each joint element is L/16. The

configuration of a compliant mechanism is assumed to have symmetry with respect to reflection

across the horizontal center line.

Computational results are listed in Table 2. Here, uout is the optimal value, uin is the dis-

placement of the input node caused by the input force, and “time” reports the computational time

spent by CPLEX [21]. The optimal solution and its deformed configuration are shown in Figure 7.

This solution has four flexible joint elements. Note that the rightmost node and the leftmost node

in the middle row have no flexible joint elements. As mentioned in section 3.4, we consider the

upper bound constraint for the number of flexible joint elements around a ground node; i.e., each
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Figure 7: Example (I). (a) The optimal solution; and (b) its deformed configuration (displacements

are magnified 50 times).

ground node can have at most one flexible joint element.2 Due to this constraint and the symmetry

constraint, these two nodes cannot have a flexible joint. The objective value could be improved if

the four joint elements connected to these two nodes are replaced by flexible ones. In view of this

aspect the result in Figure 7 agrees with the results in literature [22, 30, 59].

5.1.2 Example (II)

We next consider a problem setting shown in Figure 8(a). The members depicted by solid lines are

supposed to have the joint elements belonging to Jstiff ; their shapes are fixed. The members depicted

by dotted lines are considered targets of design. Accordingly, the number of the joint elements to

be designed is 78. An output spring is connected to the two output nodes. The configuration of a

compliant mechanism is assumed to have symmetry with respect to reflection across the horizontal

center line. The length parameter of the design domain is L = 75mm. The length of each joint

element is L/32.

Figure 8(b) shows the optimal solution. This structure has 10 flexible joint elements. The

deformed configuration is shown in Figure 8(c). Computational results are listed in Table 2.

5.1.3 Example (III)

Figure 9(a) shows the ground structure and boundary conditions to design a compliant gripper. We

use the same ground structure as example (II). Only difference is the direction of the input force.

The dotted lines show the members that are to be designed. No flexible joints are made in the

Table 2: Computational results of examples (I), (II), and (III).

uout (mm) uout/uin Time (s)

Example (I) 0.09367 0.46572 8.3

Example (II) 0.45673 1.47508 20.0

Example (III) 0.10112 0.29035 229.3

2This is an optional constraint as explained section 3.4.
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Figure 8: Example (II). (a) The design domain and boundary condition; (b) the optimal solution;

and (c) the deformed configuration of the optimal solution (displacements are magnified 50 times).

members depicted by the solid lines; the shapes of these members are fixed. We also consider the

symmetry constraint with respect to the reflection across the horizontal centerline.

Figure 9(b) shows the optimal solution, which has 8 flexible joint elements. Figure 9(c) depicts

the deformed configuration. As observed from Table 2, the output displacement is not very large,

compared with the input displacement. This motivates us to try to solve the same problem with a

finer ground structure. To do this, in section 5.2 we adopt the local search presented in section 4.

5.2 Larger examples with sequential mixed-integer programming

In this section problems with many design variables are solved by using Algorithm 4.1 in section 4.

5.2.1 Example (IV)

Figure 10(a) shows a ground structure consisting of |V| = 49 nodes and 276 members. The cross-

sections of members depicted by solid lines (i.e., 16 joint elements) are designated to belong to Jstiff .
The number of joint members to be designed is 520 and the number of the corresponding ground

members is 260. The length of each side of the design domain is L = 75mm and the length of each

3The solution obtained at the 6th iteration is same as those at the 5th iteration.
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Figure 9: Example (III). (a) The design domain and boundary condition; (b) the optimal solution;

and (c) the deformed configuration of the optimal solution (displacements are magnified 50 times).
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Figure 10: Example (IV). (a) The design domain and boundary condition; and (b) the initial

solution.
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(a) (b) (c)

(d) (e)

Figure 11: Convergence history of example (IV). The solutions obtained at (a) the 1st iteration;

(b) the 2nd iteration; (c) the 3rd iteration; (d) the 4th iteration; and (e) the 5th iteration.

Figure 12: The deformed configuration of the obtained solution of example (IV) (displacements are

magnified 50 times).
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joint element is L/32.

For this problem, example (II) in section 5.1.2 serves as a preceding coarse case in the hierarchical

optimization algorithm. The optimal solution of example (II) can be translated to the current ground

structure as shown in Figure 10(b). This solution is adopted as the initial point for Algorithm 4.1.

The radius of the neighborhood used at step 3 of Algorithm 4.1 is r = 8.

Algorithm 4.1 terminates after 6 iterations, i.e., a convergent solution is obtained after 5 itera-

tions. The convergence history is shown in Figure 11, where (x̂(k), ŷ(k)), i.e., the solution obtained

at step 1 of Algorithm 4.1, at each iteration is illustrated. The deformation of the obtained solution

is shown in Figure 12. Computational results are listed in Table 3. Since we solve two MILP prob-

lems at each iteration, both results are reported in Table 3. The objective value of the obtained

solution is about 2.1 times larger than that of the initial solution.

5.2.2 Example (V)

The final example is shown in Figure 13(a). This ground structure is same as example (IV). Only

the direction of the input force is reversed. For this problem, example (III) in section 5.1.3 serves

as a preceding coarse case in the hierarchical optimization algorithm. Figure 13(b) shows the initial

solution for Algorithm 4.1, i.e., the solution translated from example (III) to the current problem

setting. The radius of the neighborhood used at step 3 of Algorithm 4.1 is r = 8.

Algorithm 4.1 terminates after 10 iterations. Figure 14 shows the convergence history. At step 3

of the 6th iteration, 7 members in Figure 14(e) are found to have no stresses at the equilibrium

state. These members are removed, which results in the solution shown in Figure 14(f). At the

other iterations, all members have nonzero stresses and, hence, the solution at step 3 is same as that

at step 1. Figure 15 depicts the deformation of the obtained solution. It can be observed that the

deformation is primarily induced by bending at flexible joint elements. Computational results are

Table 3: Computational results of example (IV).3

Iter. uout (mm) uout/uin Time (s)

0 0.45673 1.47508 —

1: step 1 0.51252 1.61826 436.4

1: step 4 0.60924 1.49989 563.8

2: step 1 0.65351 1.57438 440.8

2: step 4 0.88402 2.09697 543.6

3: step 1 0.88902 2.07038 909.1

3: step 4 0.91154 2.17313 918.4

4: step 1 0.91929 2.16676 7,245.0

4: step 4 0.93081 2.00230 481.0

5: step 1 0.94956 2.01114 2,464.9

5: step 4 0.94956 2.01114 540.7

6: step 1 0.94956 2.01114 2,465.7

4The solution obtained at the 10th iteration is same as the ones at the 9th iteration.
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Figure 13: Example (V). (a) The design domain and boundary condition; and (b) the initial solution.

Table 4: Computational results of example (V).4

Iter. uout (mm) uout/uin Time (s)

0 0.10112 0.29035 —

1: step 1 0.10490 0.30484 36.5

1: step 4 0.10893 0.37150 1,343.5

2: step 1 0.10893 0.37150 65.7

2: step 4 0.13037 0.28754 1,135.5

3: step 1 0.13884 0.28325 70.0

3: step 4 0.14009 0.29251 1,582.7

4: step 1 0.14100 0.29320 208.2

4: step 4 0.21345 0.64703 1,765.1

5: step 1 0.21762 0.64677 67.6

5: step 4 0.21762 0.64677 1,329.2

6: step 1 0.21762 0.64677 67.6

6: step 4 0.27879 0.60534 1,145.0

7: step 1 0.34337 0.63488 30.5

7: step 4 0.48386 1.22008 415.4

8: step 1 0.55127 1.23219 23.9

8: step 4 0.60738 1.55575 714.7

9: step 1 0.72660 1.64941 31.5

9: step 4 0.72660 1.64941 608.1

10: step 1 0.72660 1.64941 31.5
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14: Convergence history of example (V). The solutions obtained at (a) the 1st iteration;

(b) the 2nd iteration; (c) the 3rd iteration; (d) the 4th iteration; (e) step 1 of the 5th iteration;

(f) step 3 of the 5th iteration; (g) the 7th iteration; (h) the 8th iteration; and (i) the 9th iteration.

listed in Table 4. The objective value of the obtained solution is about 7.2 times larger than that

of the initial solution. Also, topology of the final solution (in Figure 14(i)) is much different from

that of the initial solution (in Figure 13(b)). Thus the local search can improve the initial solution

substantially. The effect of using the two different neighborhoods in the local search may be observed

from Figure 14 and Table 4. From the viewpoint of the solution space explored at one iteration, it

may be seen that variations, among others, from Figures 14(b) to 14(c), from Figures 14(f) to 14(g),

and from Figures 14(g) to 14(h) are much larger than the range of Ň (x∗,y∗; r) with r = 8. Thus

making use of both Ň (x∗,y∗; r) and N̂ (x̌∗, y̌∗) enlarges the solution space explored at one iteration

of the local search. Meanwhile, it is observed from Table 4 that the computational effort for solving

a subproblem defined with N̂ (x̌∗, y̌∗) is much smaller than that for solving a subproblem with
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Figure 15: The deformed configuration of the obtained solution of example (V) (displacements are

magnified 50 times).

Ň (x∗,y∗; 8). This is because, as discussed in Remark 4.2, the subproblem defined with N̂ (x̌∗, y̌∗)

does not involve “big-M.” Thus using the two neighborhoods has an advantage in computational

efficiency compared with using only Ň (x∗,y∗; r) with an increased value of r.

6 Conclusions

Generous studies are being made to optimization methods, mostly continuum-based topology op-

timization methods, for design of compliant mechanisms. This paper has explored potentials of a

mixed-integer programming approach to designing compliant mechanisms that are realized as planar

frame structures consisting of standardized beam elements. To give some joints rotational flexibility

and allow variation of structural topology, we have adopted element-connectivity parameterization

due to Jang et al. [22], in which the cross-sections of two short joint elements connected to both ends

of each ground beam are considered design variables. In this paper, sections not only of the ground

members but also of the joints elements are standardized, i.e., the design variables are chosen among

predetermined candidates. The local stress constraints are directly addressed. By maximizing the

output displacement under these constraints, we have attempted to balancing the two objectives,

preventing local failures and gaining flexibility that induces the desired performance as a compliant

mechanism. As a consequence, the obtained solution has no hinge-like regions and the cross-sections

of its elements are fully standardized. This might make it easy to manufacture physical products

without resorting to post-processing of the computational results. Also, the locations of elastic

hinges are clearly identified in the solution and, hence, from a mechanical point of view one might

easily grasp essential points of the obtained design.

The proposed method solves a mixed-integer linear programming (MILP) problem to find a

compliant mechanism. Small-scale problems can be solved by using an existing algorithm with

guaranteed convergence to global optimal solutions. Larger problems have been attacked by a local

search, in which MILP problems, in conjunction with the constraint restricting the solution space,

are solved sequentially. This local search uses two different kinds of neighborhoods alternately in

order to permit sufficient variation of structural topology and achieve relatively small computational
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cost. The solution obtained by the local search is not guaranteed to be globally optimal but satisfies

the local stress constraints.

This paper has developed an MILP formulation for topology optimization of frame structures

with an element-connectivity parameterization. For continuum optimization with this parameteri-

zation [58, 60], a similar MILP formulation is possible. Also, extension to optimization of a frame

model with flexible joints [14, 15] could be explored.
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